一.综述 Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,图像也更加美观,本文基于seaborn官方API还有自己的一些理解.   1.1.样式控制:axes_style() and set_style() seaborn提供了5个主题: darkgrid 黑色网格(默认) whitegrid 白色网格 dark 黑色背景 white 白色背景 ticks 带刻度线 一个简单的小例子: import numpy as npsns.set_styl…
连续型变量的推断性分析方法主要有t检验和方差分析两种,这两种方法可以解决一些实际的分析问题,下面我们分别来介绍一下这两种方法 一.t检验(Student's t test) t检验也称student t检验(Student's t test),由Gosset提出,主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料.我们在介绍连续变量分布时讲过t分布,t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著. 介绍t检验之前,先说一下Z检验,假设我们已知一个样本…
1)条形图 条形图或许是最常用图形,常用来展示分类(different categories on the x-axis)和数值(numeric values on the y-axis)之间的关系.sometimes the bar heights represent counts of cases in the data set, and sometimes they represent values in the data set(有时条形图高度代表数据集中的频数(count),有时候代表…
Seaborn的分类图分为三类,将分类变量每个级别的每个观察结果显示出来,显示每个观察分布的抽象表示,以及应用统计估计显示的权重趋势和置信区间: 第一个包括函数swarmplot()和stripplot() 第二个包括函数boxplot()和violinplot() 第三个包括函数barplot()和pointplt() 导入所需要的库: import numpy as np import matplotlib.pyplot as plt import seaborn as sns sns.se…
Pandas单变量画图 Bar Chat Line Chart Area Chart Histogram df.plot.bar() df.plot.line() df.plot.area() df.plot.hist() 适合定类数据和小范围取值的定序数据 适合定序数据和定距数据 适合定序数据和定距数据 适合定距数据 pandas库是Python数据分析最核心的一个工具库:"杀手级特征",使整个生态系统融合在一起.除了数据读取.转换之外,也可以进行数据可视化.易于使用和富有表现力的p…
Seaborn(二)之数据集分布可视化 当处理一个数据集的时候,我们经常会想要先看看特征变量是如何分布的.这会让我们对数据特征有个很好的初始认识,同时也会影响后续数据分析以及特征工程的方法.本篇将会介绍如何使用 seaborn 的一些工具来检测单变量和双变量分布情况. %matplotlib inline import numpy as np import pandas as pd from scipy import stats, integrate import matplotlib.pypl…
今天是2017年12月30日,2017年的年尾,2018年马上就要到了,回顾2017过的确实很快,不知不觉就到年末了,再次开篇对2016.2017年的学习数据挖掘,机器学习方面的知识做一个总结,对自己所学的知识也做一个梳理,查漏补缺关于数据挖据.数据分析,可视化,ML,DL,NLP等. 作者:csj更新时间:2017.12.27 email:59888745@qq.com 说明:因内容较多,会不断更新 *学习总结: 2016.10 主要看的书 <Python3-廖雪峰>,<Python核…
动态可视化 数据可视化之魅D3,Processing,pandas数据分析,科学计算包Numpy,可视化包Matplotlib,Matlab语言可视化的工作,Matlab没有指针和引用是个大问题 D3.js入门指南 什么是D3?D3是指数据驱动文档(Data-Driven Documents),根据D3的官方定义: D3.js是一个JavaScript库,它可以通过数据来操作文档.D3可以通过使用HTML.SVG和CSS把数据鲜活形象地展现出来.D3严格遵循Web标准,因而可以让你的程序轻松兼容…
Path形状获取字符串型变量数据: var path = new Path(); path.Data = Geometry.Parse("M 100,200 C 100,25 400,350 400,175 H 280");…
感觉要总结总结了,希望这次能写个系列文章分享分享心得,和大神们交流交流,提升提升. 因为半桶子水的水平,一直在想写什么,为什么写,怎么写. 直到现在找到了一种好的办法: 1.写什么 自己手上掌握的,工作中经常用到的,从数据源 到 最后可视化 所有一套流程. 2.为什么写 因为很长一段时间没有进行总结和梳理了,总感觉很多东西很零散,另一方面,写写笔记也是对那些东西的一次巩固. 3.怎么写 这个问题其实想了很久,后来想通了,就是怎么把工具都放在手上,结合着用起来,按流程走.   接下来都会这么写:…