TensofFlow函数: tf.image.crop_and_resize】的更多相关文章

tf.image.crop_and_resize( image, boxes, box_ind, crop_size, method='bilinear', extrapolation_value=0, name=None ) 从输入图像张量中提取crop(裁剪),并双线调整它们的大小(可能高宽比变化),到由crop_size指定的通用输出大小.这比从输入图像中提取固定大小切片并且不允许调整大小或宽高比变化的crop_to_bounding_box操作更普遍. 从输入image中返回一个crop…
https://blog.csdn.net/m0_38024332/article/details/81779544 关于 tf.image.crop_and_resize 的使用  最近在学习fast-RCNN,在写ROI Pooling层看到说可以直接利用 tf.image.crop_and_resize .但是如何使用这个函数成了很大的问题,查网上很多资料都是复制加翻译从官网api来的,受个人的英语能力又接受不了,最后发帖求助解决了这个问题,兴致盎然分享一遍. 以下是相关的链接: 官网AP…
上一节,我们已经讲解了使用全连接网络实现手写数字识别,其正确率大概能达到98%,这一节我们使用卷积神经网络来实现手写数字识别, 其准确率可以超过99%,程序主要包括以下几块内容 [1]: 导入数据,即测试集和验证集 [2]: 引入 tensorflow 启动InteractiveSession(比session更灵活) [3]: 定义两个初始化w和b的函数,方便后续操作 [4]: 定义卷积和池化函数,这里卷积采用padding,使得 输入输出图像一样大,池化采取2x2,那么就是4格变一格 [5]…
Tensorflow函数——tf.variable_scope()详解 https://blog.csdn.net/yuan0061/article/details/80576703 2018年06月05日 09:38:25 yuan0061 阅读数:2567   tf.variable_scope(name_or_scope,default_name=None,values=None,initializer=None,regularizer=None,caching_device=None,p…
转自 http://www.cnblogs.com/welhzh/p/6607581.html 下面是这位博主自己的翻译加上测试心得 tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) 除去name参数用以指定该操作的name,与方法有关…
1.tf.cast(x,dtype,name) 此函数的目的是为了将x数据,准换为dtype所表示的类型,例如tf.float32,tf.bool,tf.uint8等 example:  import tensorflow as tf x = tf.Variable([True,True,False,False]) y = tf.cast(x,dtype = tf.float32) sess = tf.Session() init = tf.global_variables_initialize…
关于tensorflow里多维数组(主要是四维)的组织形式之前一直没弄懂,最近遇到相关问题,算是搞清楚了一些东西,特别记下来,免得自己又遗忘了. 三维形式能很简单的脑补出来三维的形状,不再赘述. 之前一直纠结四维的时候数据是怎样填充的.特别是遇到深度学习的时候输入都是[batch,height,width,channel],这种四维的张量的时候,是怎样个数据的形状. 先看代码: prediction2 = tf.constant([1,2,3,4,5,6,7,8,9,13,14,14,15,1,…
tf.placeholder()函数 Tensorflow中的palceholder,中文翻译为占位符,什么意思呢? 在Tensoflow2.0以前,还是静态图的设计思想,整个设计理念是计算流图,在编写程序时,首先构筑整个系统的graph,代码并不会直接生效,这一点和python的其他数值计算库(如Numpy等)不同,graph为静态的,在实际的运行时,启动一个session,程序才会真正的运行.这样做的好处就是:避免反复地切换底层程序实际运行的上下文,tensorflow帮你优化整个系统的代码…
转载自此大神 http://blog.csdn.net/mao_xiao_feng/article/details/53453926 max pooling是CNN当中的最大值池化操作,其实用法和卷积很类似 有些地方可以从卷积去参考[TensorFlow]tf.nn.conv2d是怎样实现卷积的? tf.nn.max_pool(value, ksize, strides, padding, name=None) 参数是四个,和卷积很类似: 第一个参数value:需要池化的输入,一般池化层接在卷积…
转载自此大神 http://blog.csdn.net/mao_xiao_feng/article/details/53453926 max pooling是CNN当中的最大值池化操作,其实用法和卷积很类似 有些地方可以从卷积去参考[TensorFlow]tf.nn.conv2d是怎样实现卷积的? tf.nn.max_pool(value, ksize, strides, padding, name=None) 参数是四个,和卷积很类似: 第一个参数value:需要池化的输入,一般池化层接在卷积…