OLED液晶屏幕(2)取模软件】的更多相关文章

https://blog.csdn.net/ling3ye/article/details/53399305 文件夹说明: Adafruit_SSD1306-master   ——SSD1306库(OLED的主要库文件,库请复制在Arduino的库目录下) Adafruit-GFX-Library-master  —— GFX库(是一种图形库) 字模提取V2.2   —— 可以生成中文字点阵变量的软件 LS_PrintChinese —— 主程序 这其实就用到  字模提取V2.2  的软件了,…
最近因为要使用STM32做毕业设计,需要用LCD显示中文,STM32开发板用的是原子的战舰STM32开发板,给的LCD显示例程里貌似没有中文显示,那么需要自己去编写中文显示程序. 软件编写对我来说并不是什么难事,关键就是在这个过程中遇到了一个非常奇葩的问题. 我用的取模软件是PCtoLCD2002.exe,这在很多地方都能找到.生成字模后,在每一个字模的最后有对应的中文注释,但是将生成的字模复制到程序中发现一个问题,中文显示成了问号,显示如下: 我想,这很简单,无非就是中文编码格式不一样嘛,新建…
oled屏幕配套取字模软件使用 作者:李剀 出处:https://www.cnblogs.com/kevin-nancy/p/10531368.html欢迎转载,但也请保留上面这段声明.谢谢! **PC2LCD2002取模方式设置:阴码+逐列式+顺向+C51格式** 附: 代码 //24*24的OLED汉字点阵,包括三个汉字:开.发.板.这三个汉字的点阵库,是利用PCtoLCD2002生产的, //软件设置的取模方式同OLED实验ASCII的取模方式一模一样,字体采用12*大小,一个汉字点阵占用…
E - Qwerty78 Trip Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit Status Practice Gym 100947E Description standard input/output Announcement   Statements Qwerty78 is a well known programmer (He is a member of the I…
头文件:#include <math.h> fmod() 用来对浮点数进行取模(求余),其原型为:    double fmod (double x); 设返回值为 ret,那么 x = n * y + ret,其中 n 是整数,ret 和 x 有相同的符号,而且 ret 的绝对值小于 y 的绝对值.如果 x = 0,那么 ret = NaN. fmod 函数计算 x 除以 y 的 f 浮点余数,这样 x = i*y + f,其中 i 是整数,f 和 x 有相同的符号,而且 f 的绝对值小于…
题目:1119 机器人走方格 V2 思路:求C(m+n-2,n-1) % 10^9 +7       (2<=m,n<= 1000000) 在求组合数时,一般都通过双重for循环c[i][j] = c[i-1][j] + c[i-1][j-1]直接得到. 但是m,n都很大时,就会超时. 利用公式:C(n,r) = n! / r! *(n-r)!  与  a/b = x(mod M)  ->  a * (b ^ (M-2)) =x (mod M)     进行求解 费马小定理:对于素数 M…
传送门:HDU 5895 Mathematician QSC 这是一篇很好的题解,我想讲的他基本都讲了http://blog.csdn.net/queuelovestack/article/details/52577212 [分析]一开始想简单了,对于a^x mod p这种形式的直接用欧拉定理的数论定理降幂了 结果可想而知,肯定错,因为题目并没有保证gcd(x,s+1)=1,而欧拉定理的数论定理是明确规定的 所以得另谋出路 那么网上提供了一种指数循环节降幂的方法 具体证明可以自行从网上找一找 有…
1千万长度的数对73和137取模.(两个数有点像,不要写错了) 效率要高的话,每15位取一次模,因为取模后可能有3位,因此用ll就最多15位取一次. 一位一位取模也可以,但是比较慢,取模运算是个耗时的运算. #include <cstdio> #define ll long long ll n,m; int p,cas; char s[10000005]; int main() { while(gets(s)){ n=m=p=0; while(s[p]){ for(int i=0;i<1…
组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1)  , 此时较简单,在O(n2)可承受的情况下组合数的计算可以直接用杨辉三角递推,边做加法边取模. (2) ,   ,并且是素数 本文针对该取值范围较大又不太大的情况(2)进行讨论. 这个问题可以使用Lucas定理,定理描述: 其中 这样将组合数的求解分解为小问题的乘积,下面考虑计算C(ni, mi) %p. 已知C(n, m) mod p = n!/(m!(…
(转自:http://www.jb51.net/article/54947.htm) 本文实例汇总了C语言实现的快速幂取模算法,是比较常见的算法.分享给大家供大家参考之用.具体如下: 首先,所谓的快速幂,实际上是快速幂取模的缩写,简单的说,就是快速的求一个幂式的模(余).在程序设计过程中,经常要去求一些大数对于某个数的余数,为了得到更快.计算范围更大的算法,产生了快速幂取模算法.我们先从简单的例子入手:求abmodc 算法1.直接设计这个算法: ; ;i<=b;i++) { ans = ans…