一.上节回顾 上一节,我们探究了网络延迟增大问题的分析方法,并通过一个案例,掌握了如何用hping3.tcpdump.Wireshark.strace 等工具,来排查和定位问题的根源. 简单回顾一下,网络延迟是最核心的网络性能指标.由于网络传输.网络包处理等各种因素的影响,网络延迟不可避免.但过大的网络延迟,会直接影响用户的体验. 所以,在发现网络延迟增大的情况后,你可以先从路由.网络包的收发.网络包的处理,再到应用程序等,从各个层级分析网络延迟,等到找出网络延迟的来源层级后,再深入定位瓶颈所在…
一.中断的魅力 1.中断在生活的魅力 比如你订了一份外卖,但是不确定外卖什么时候送到,也没有别的方法了解外卖的进度,但是,配送员送外卖是不等人的,到了你这儿没人取的话,就直接走人了.所以你指能苦苦等着,时不时去门口看看外卖送到没,而不能干其他事情. 不过呢,如果你在订外卖的时候,你就跟配送员约定好,让他送到后给你打个电话,你就不用苦苦等待了,就可以去忙别的事情,直到电话一响,接电话.取外卖就可以了 这里的"打电话",其实就是一个中断.没接到电话的时候,你可以做其他的事情:只有接到了电话…
一.上节总结回顾 上一节,我们回顾了经典的 C10K 和 C1000K 问题.简单回顾一下,C10K 是指如何单机同时处理 1 万个请求(并发连接 1 万)的问题,而 C1000K 则是单机支持处理 100 万个请求(并发连接 100 万)的问题. I/O 模型的优化,是解决 C10K 问题的最佳良方.Linux 2.6 中引入的 epoll,完美解决了C10K 的问题,并一直沿用至今.今天的很多高性能网络方案,仍都基于 epoll. 自然,随着互联网技术的普及,催生出更高的性能需求.从 C10…
一.上节回顾 上一节,我带你一起梳理了,性能问题分析的一般步骤.先带你简单回顾一下. 我们可以从系统资源瓶颈和应用程序瓶颈,这两个角度来分析性能问题的根源. 从系统资源瓶颈的角度来说,USE 法是最为有效的方法,即从使用率.饱和度以及错误数这三个方面,来分析 CPU.内存.磁盘和文件系统 I/O.网络以及内核资源限制等各类软硬件资源.至于这些资源的分析方法,我也带你一起回顾了,咱们专栏前面几大模块的分析套路. 从应用程序瓶颈的角度来说,可以把性能问题的来源,分为资源瓶颈.依赖服务瓶颈以及应用自身…
一.上节回顾 上一节,我们了解了 NAT(网络地址转换)的原理,学会了如何排查 NAT 带来的性能问题,最后还总结了 NAT 性能优化的基本思路.我先带你简单回顾一下. NAT 基于 Linux 内核的连接跟踪机制,实现了 IP 地址及端口号重写的功能,主要被用来解决公网 IP 地址短缺的问题. 在分析 NAT 性能问题时,可以先从内核连接跟踪模块 conntrack 角度来分析,比如用systemtap.perf.netstat 等工具,以及 proc 文件系统中的内核选项,来分析网络协议栈的…
一.上节回顾 专栏更新至今,四大基础模块的最后一个模块——网络篇,我们就已经学完了.很开心你还没有掉队,仍然在积极学习思考和实践操作,热情地留言和互动.还有不少同学分享了在实际生产环境中,碰到各种性能问题的分析思路和优化方法,这里也谢谢你们. 今天是性能优化答疑的第五期.照例,我从网络模块的留言中,摘出了一些典型问题,作为今天的答疑内容,集中回复.同样的,为了便于你学习理解,它们并不是严格按照文章顺序排列的. 每个问题,我都附上了留言区提问的截屏.如果你需要回顾内容原文,可以扫描每个问题右下方的…
一.上节回顾 上一节,我们一起学习了怎么使用动态追踪来观察应用程序和内核的行为.先简单来回顾一下.所谓动态追踪,就是在系统或者应用程序还在正常运行的时候,通过内核中提供的探针,来动态追踪它们的行为,从而辅助排查出性能问题的瓶颈. 使用动态追踪,便可以在不修改代码也不重启服务的情况下,动态了解应用程序或者内核的行为.这对排查线上的问题.特别是不容易重现的问题尤其有效. 在 Linux 系统中,常见的动态追踪方法包括 ftrace.perf.eBPF/BCC 以及 SystemTap 等. 使用 p…
一.上节回顾 上一节,我们一起学习了,应用程序监控的基本思路,先简单回顾一下.应用程序的监控,可以分为指标监控和日志监控两大块. 指标监控,主要是对一定时间段内的性能指标进行测量,然后再通过时间序列的方式,进行处理.存储和告警. 而日志监控,则可以提供更详细的上下文信息,通常通过 ELK 技术栈,来进行收集.索引和图形化展示. 在跨多个不同应用的复杂业务场景中,你还可以构建全链路跟踪系统.这样,你就可以动态跟踪调用链中各个组件的性能,生成整个应用的调用拓扑图,从而加快定位复杂应用的性能问题. 不…
一.上节回顾 专栏更新至今,咱们专栏最后一部分——综合案例模块也要告一段落了.很高兴看到你没有掉队,仍然在积极学习思考.实践操作,并热情地分享你在实际环境中,遇到过的各种性能问题的分析思路以及优化方法. 今天是性能优化答疑的第六期.照例,我从综合案例模块的留言中,摘出了一些典型问题,作为今天的答疑内容,集中回复.为了便于你学习理解,它们并不是严格按照文章顺序排列的.每个问题,我都附上了留言区提问的截屏.如果你需要回顾内容原文,可以扫描每个问题右下方的二维码查看. 二.问题 1:容器冷启动性能分析…
一.上节回顾 上一节,我们一起回顾了常见的文件系统和磁盘 I/O 性能指标,梳理了核心的 I/O 性能观测工具,最后还总结了快速分析 I/O 性能问题的思路. 虽然 I/O 的性能指标很多,相应的性能分析工具也有好几个,但理解了各种指标的含义后,你就会发现它们其实都有一定的关联. 顺着这些关系往下理解,你就会发现,掌握这些常用的瓶颈分析思路,其实并不难.找出了 I/O 的性能瓶颈后,下一步要做的就是优化了,也就是如何以最快的速度完成 I/O 操作,或者换个思路,减少甚至避免磁盘的 I/O 操作.…
一.上节总结 专栏更新至今,四大基础模块的第三个模块——文件系统和磁盘 I/O 篇,我们就已经学完了.很开心你还没有掉队,仍然在积极学习思考和实践操作,并且热情地留言与讨论. 今天是性能优化的第四期.照例,我从 I/O 模块的留言中摘出了一些典型问题,作为今天的答疑内容,集中回复.同样的,为了便于你学习理解,它们并不是严格按照文章顺序排列的. 每个问题,我都附上了留言区提问的截屏.如果你需要回顾内容原文,可以扫描每个问题右下方的二维码查看. 二.问题 1:阻塞.非阻塞 I/O 与同步.异步 I/…
一.上节回顾 上一节,我们学了网络性能优化的几个思路,我先带你简单复习一下. 在优化网络的性能时,你可以结合 Linux 系统的网络协议栈和网络收发流程,然后从应用程序.套接字.传输层.网络层再到链路层等每个层次,进行逐层优化.上一期我们主要学习了应用程序和套接字的优化思路,比如: 在应用程序中,主要优化 I/O 模型.工作模型以及应用层的网络协议: 在套接字层中,主要优化套接字的缓冲区大小. 今天,我们顺着 TCP/IP 网络模型,继续向下,看看如何从传输层.网络层以及链路层中,优化 Linu…
一.上节回顾 上一节,我带你一起梳理了常见的性能优化思路,先简单回顾一下.我们可以从系统和应用程序两个角度,来进行性能优化. 从系统的角度来说,主要是对 CPU.内存.网络.磁盘 I/O 以及内核软件资源等进行优化. 而从应用程序的角度来说,主要是简化代码.降低 CPU 使用.减少网络请求和磁盘 I/O,并借助缓存.异步处理.多进程和多线程等,提高应用程序的吞吐能力. 性能优化最好逐步完善,动态进行.不要追求一步到位,而要首先保证能满足当前的性能要求. 性能优化通常意味着复杂度的提升,也意味着可…
一.性能优化方法论 不可中断进程案例 二.怎么评估性能优化的效果? 1.评估思路 2.几个为什么 1.为什么要选择不同维度的指标? 应用程序和系统资源是相辅相成的关系 2.性能优化的最终目的和结果? 好的应用程序 3.为什么必须要使用应用程序的指标,来评估性能优化的整体效果? 系统优化总是为应用程序服务的 4.为什么需要用系统资源的指标,来观察和分析瓶颈的来源 系统资源的使用情况是影响应用程序性能的根源 三.多个性能问题同时存在,要怎么选择? 四.有多种优化方法时,要如何选择? 五.系统优化 六…
一.内存的分配和回收 1.管理内存的过程中,也很容易发生各种各样的“事故”, 对应用程序来说,动态内存的分配和回收,是既核心又复杂的一的一个逻辑功能模块.管理内存的过程中,也很容易发生各种各样的“事故”, 比如,没正确回收分配后的内存,导致了泄漏.访问的是已分配内存边界外的地址,导致程序异常退出,等等. 你在程序中定义了一个局部变量,比如一个整数数组 int data[64] ,就定义了一个可以存储 64 个整数的内存段.由于这是一个局部变量,它会从内它会从内存空间的栈中分配内存 1.栈内存由系…
一.上节回顾 不知不觉,我们已经学完了整个专栏的四大基础模块,即 CPU.内存.文件系统和磁盘 I/O.以及网络的性能分析和优化.相信你已经掌握了这些基础模块的基本分析.定位思路,并熟悉了相关的优化方法. 接下来,我们将进入最后一个重要模块—— 综合实战篇.这部分实战内容,也将是我们对前面所学知识的复习和深化. 我们都知道,随着 Kubernetes.Docker 等技术的普及,越来越多的企业,都已经走上了应用程序容器化的道路.我相信,你在了解学习这些技术的同时,一定也听说过不少,基于 Dock…
一.环境准备 1.安装软件包 终端1 机器配置:2 CPU,8GB 内存 预先安装 docker.sysstat.perf等工具 [root@luoahong ~]# docker -v Docker version 18.09.1, build 4c52b90 [root@luoahong ~]# rpm -qa|grep sysstat sysstat-12.1.2-1.x86_64 终端2 机器配置:1 CPU,2GB 内存 预先安装ab 等工具 [root@nfs ~]#yum -y i…
一.free数据的来源 1.碰到看不明白的指标时该怎么办吗? 不懂就去查手册.用 man 命令查询 free 的文档.就可以找到对应指标的详细说明.比如,我们执行 man fre... 2.free数据的来源 [root@ccb-installment-api ~]# man free NAME free - Display amount of free and used memory in the system SYNOPSIS free [options] DESCRIPTION free…
一.环境准备 1.安装软件包 终端1 机器配置:2 CPU,8GB 内存 预先安装 docker.sysstat.perf等工具 [root@luoahong ~]# docker -v Docker version 18.09.1, build 4c52b90 [root@luoahong ~]# rpm -qa|grep sysstat sysstat-12.1.2-1.x86_64 终端2 机器配置:1 CPU,2GB 内存 预先安装ab 等工具 [root@nfs ~]#yum -y i…
一.案例环境描述 1.环境准备 2CPU,4GB内存 预先安装docker sysstat工具 2.温馨提示 案例中 Python 应用的核心逻辑比较简单,你可能一眼就能看出问题,但实际生产环境中的源码就复杂多了.所以,我依旧建议,操作之前别看源码,避免先入为主,要把它当成一个黑盒来分析.这样 你可以更好把握住,怎么从系统的资源使用问题出发,分析出瓶颈所在的应用,以及瓶颈在应用中大概的位置 3.应用环境 1.运行目标应用 docker run -v /tmp:/tmp --name=app -i…
一.上节回顾 前面内容,我们学习了 Linux 网络的基础原理以及性能观测方法.简单回顾一下,Linux网络基于 TCP/IP 模型,构建了其网络协议栈,把繁杂的网络功能划分为应用层.传输层.网络层.网络接口层等四个不同的层次,既解决了网络环境中设备异构的问题,也解耦了网络协议的复杂性. 基于 TCP/IP 模型,我们还梳理了 Linux 网络收发流程和相应的性能指标.在应用程序通过套接字接口发送或者接收网络包时,这些网络包都要经过协议栈的逐层处理.我们通常用带宽.吞吐.延迟.PPS 等来衡量网…
一.上节回顾 上一节,我带你一起学习了网络性能的评估方法.简单回顾一下,Linux 网络基于 TCP/IP协议栈构建,而在协议栈的不同层,我们所关注的网络性能也不尽相同. 在应用层,我们关注的是应用程序的并发连接数.每秒请求数.处理延迟.错误数等,可以使用 wrk.Jmeter 等工具,模拟用户的负载,得到想要的测试结果. 而在传输层,我们关注的是 TCP.UDP 等传输层协议的工作状况,比如 TCP 连接数.TCP 重传.TCP 错误数等.此时,你可以使用 iperf.netperf 等,来测…
一.上节回顾 上一节,我们学习了 DNS 性能问题的分析和优化方法.简单回顾一下,DNS 可以提供域名和 IP 地址的映射关系,也是一种常用的全局负载均衡(GSLB)实现方法. 通常,需要暴露到公网的服务,都会绑定一个域名,既方便了人们记忆,也避免了后台服务 IP 地址的变更影响到用户. 不过要注意,DNS 解析受到各种网络状况的影响,性能可能不稳定.比如公网延迟增大,缓存过期导致要重新去上游服务器请求,或者流量高峰时 DNS 服务器性能不足等,都会导致 DNS 响应的延迟增大. 此时,可以借助…
一.上节回顾 上一期,我们一起梳理了,网络时不时丢包的分析定位和优化方法.先简单回顾一下.网络丢包,通常会带来严重的性能下降,特别是对 TCP 来说,丢包通常意味着网络拥塞和重传,进而会导致网络延迟增大以及吞吐量降低. 而分析丢包问题,还是用我们的老套路,从 Linux 网络收发的流程入手,结合 TCP/IP 协议栈的原理来逐层分析. 其实,在排查网络问题时,我们还经常碰到的一个问题,就是内核线程的 CPU 使用率很高.比如,在高并发的场景中,内核线程 ksoftirqd 的 CPU 使用率通常…
一.上节回顾 上一节,我以 ksoftirqd CPU 使用率高的问题为例,带你一起学习了内核线程 CPU 使用率高时的分析方法.先简单回顾一下. 当碰到内核线程的资源使用异常时,很多常用的进程级性能工具,并不能直接用到内核线程上.这时,我们就可以使用内核自带的 perf 来观察它们的行为,找出热点函数,进一步定位性能瓶颈.不过,perf 产生的汇总报告并不直观,所以我通常也推荐用火焰图来协助排查. 其实,使用 perf 对系统内核线程进行分析时,内核线程依然还在正常运行中,所以这种方法也被称为…
一.上节回顾 前几节,我们一起学习了文件系统和磁盘 I/O 的工作原理,以及相应的性能分析和优化方法.接下来,我们将进入下一个重要模块—— Linux 的网络子系统. 由于网络处理的流程最复杂,跟我们前面讲到的进程调度.中断处理.内存管理以及 I/O等都密不可分,所以,我把网络模块作为最后一个资源模块来讲解. 同 CPU.内存以及 I/O 一样,网络也是 Linux 系统最核心的功能.网络是一种把不同计算机或网络设备连接到一起的技术,它本质上是一种进程间通信方式,特别是跨系统的进程间通信,必须要…
一.上节回顾 上一节,我带你学习了 Linux 网络的基础原理.简单回顾一下,Linux 网络根据 TCP/IP模型,构建其网络协议栈.TCP/IP 模型由应用层.传输层.网络层.网络接口层等四层组成,这也是 Linux 网络栈最核心的构成部分. 应用程序通过套接字接口发送数据包时,先要在网络协议栈中从上到下逐层处理,然后才最终送到网卡发送出去:而接收数据包时,也要先经过网络栈从下到上的逐层处理,最后送到应用程序. 了解 Linux 网络的基本原理和收发流程后,你肯定迫不及待想知道,如何去观察网…
一.上节回顾 上一节,我带你学习了 tcpdump 和 Wireshark 的使用方法,并通过几个案例,带你用这两个工具实际分析了网络的收发过程.碰到网络性能问题,不要忘记可以用 tcpdump 和Wireshark 这两个大杀器,抓取实际传输的网络包,排查潜在的性能问题. 今天,我们一起来看另外一个问题,怎么缓解 DDoS(Distributed Denial of Service)带来的性能下降问题. 二.DDoS 简介 1.DDoS 简介 DDoS 的前身是 DoS(Denail of S…
一.上节回顾 上一节,我们学习了碰到分布式拒绝服务(DDoS)的缓解方法.简单回顾一下,DDoS利用大量的伪造请求,导致目标服务要耗费大量资源,来处理这些无效请求,进而无法正常响应正常用户的请求. 由于 DDoS 的分布式.大流量.难追踪等特点,目前确实还没有方法,能够完全防御DDoS 带来的问题,我们只能设法缓解 DDoS 带来的影响. 比如,你可以购买专业的流量清洗设备和网络防火墙,在网络入口处阻断恶意流量,只保留正常流量进入数据中心的服务器. 在 Linux 服务器中,你可以通过内核调优.…
一.上节回顾 上一节,我们学习了 NAT 的原理,明白了如何在 Linux 中管理 NAT 规则.先来简单复习一下. NAT 技术能够重写 IP 数据包的源 IP 或目的 IP,所以普遍用来解决公网 IP 地址短缺的问题.它可以让网络中的多台主机,通过共享同一个公网 IP 地址,来访问外网资源.同时,由于 NAT 屏蔽了内网网络,也为局域网中机器起到安全隔离的作用. Linux 中的 NAT ,基于内核的连接跟踪模块实现.所以,它维护每个连接状态的同时,也对网络性能有一定影响.那么,碰到 NAT…