【数据结构与算法】k-d tree算法】的更多相关文章

k-d tree算法 k-d树(k-dimensional树的简称),是一种分割k维数据空间的数据结构.主要应用于多维空间关键数据的搜索(如:范围搜索和最近邻搜索). 应用背景 SIFT算法中做特征点匹配的时候就会利用到k-d树.而特征点匹配实际上就是一个通过距离函数在高维矢量之间进行相似性检索的问题.针对如何快速而准确地找到查询点的近邻,现在提出了很多高维空间索引结构和近似查询的算法,k-d树就是其中一种. 索引结构中相似性查询有两种基本的方式:一种是范围查询(range searches),…
在Apriori算法原理总结中,我们对Apriori算法的原理做了总结.作为一个挖掘频繁项集的算法,Apriori算法需要多次扫描数据,I/O是很大的瓶颈.为了解决这个问题,FP Tree算法(也称FP Growth算法)采用了一些技巧,无论多少数据,只需要扫描两次数据集,因此提高了算法运行的效率.下面我们就对FP Tree算法做一个总结. 1. FP Tree数据结构 为了减少I/O次数,FP Tree算法引入了一些数据结构来临时存储数据.这个数据结构包括三部分,如下图所示: 第一部分是一个项…
FP Tree算法原理总结 在Apriori算法原理总结中,我们对Apriori算法的原理做了总结.作为一个挖掘频繁项集的算法,Apriori算法需要多次扫描数据,I/O是很大的瓶颈.为了解决这个问题,FP Tree算法(也称FP Growth算法)采用了一些技巧,无论多少数据,只需要扫描两次数据集,因此提高了算法运行的效率.下面我们就对FP Tree算法做一个总结. 1. FP Tree数据结构 为了减少I/O次数,FP Tree算法引入了一些数据结构来临时存储数据.这个数据结构包括三部分,如…
转载自:http://blog.csdn.net/yuanrxdu/article/details/22474697Merkle Tree是Dynamo中用来同步数据一致性的算法,Merkle Tree是基于数据HASH构建的一个树.它具有以下几个特点: 1.数据结构是一个树,可以是二叉树,也可以是多叉树(本BLOG以二叉树来分析) 2.Merkle Tree的叶子节点的value是数据集合的单元数据或者单元数据HASH. 3.Merke Tree非叶子节点value是其所有子节点value的H…
字符串 作为人机交互的途径,程序或多或少地肯定要需要处理文字信息.如何在计算机中抽象人类语言的信息就成为一个问题.字符串便是这个问题的答案.虽然从形式上来说,字符串可以算是线性表的一种,其数据储存区存储的元素是一个个来自于选定字符集的字符,但是字符串由于其作为一个整体才有表达意义的这个特点,显示出一些特殊性.人们一般关注线性表都会关注其元素和表的关系以及元素之间的关系和操作,而字符串常常需要一些对表整体的关注和操作. 字符串的基本概念如长度,比大小,子字符串等等这些,只要有点编程基础的人都懂就不…
文章出处:http://coolshell.cn/articles/8052.html K Nearest Neighbor算法又叫KNN算法,这个算法是机器学习里面一个比较经典的算法, 总体来说KNN算法是相对比较容易理解的算法.其中的K表示最接近自己的K个数据样本.KNN算法和K-Means算法不同的是,K-Means算法用来聚类,用来判断哪些东西是一个比较相近的类型,而KNN算法是用来做归类的,也就是说,有一个样本空间里的样本分成很几个类型,然后,给定一个待分类的数据,通过计算接近自己最近…
数据结构与算法--最短路径之Floyd算法 我们知道Dijkstra算法只能解决单源最短路径问题,且要求边上的权重都是非负的.有没有办法解决任意起点到任意顶点的最短路径问题呢?如果用Dijkstra算法,可以这样做: Dijkstra[] all = new Dijkstra[graph.vertexNum()]; for (int i = 0; i < all.length; i++) { all[i] = new Dijkstra(graph, i); } for (int s = 0; s…
本文转载自:http://blog.csdn.net/yuanrxdu/article/details/22474697 Merkle Tree是Dynamo中用来同步数据一致性的算法,Merkle Tree是基于数据HASH构建的一个树.它具有以下几个特点: 1.数据结构是一个树,可以是二叉树,也可以是多叉树(本BLOG以二叉树来分析) 2.Merkle Tree的叶子节点的value是数据集合的单元数据或者单元数据HASH. 3.Merke Tree非叶子节点value是其所有子节点valu…
K Nearest Neighbor算法又叫KNN算法,这个算法是机器学习里面一个比较经典的算法, 总体来说KNN算法是相对比较容易理解的算法.其中的K表示最接近自己的K个数据样本.KNN算法和K-Means算法不同的是,K-Means算法用来聚类,用来判断哪些东西是一个比较相近的类型,而KNN算法是用来做归类的,也就是说,有一个样本空间里的样本分成很几个类型,然后,给定一个待分类的数据,通过计算接近自己最近的K个样本来判断这个待分类数据属于哪个分类.你可以简单的理解为由那离自己最近的K个点来投…
博客转载自:https://leileiluoluo.com/posts/kdtree-algorithm-and-implementation.html k-d tree即k-dimensional tree,常用来作空间划分及近邻搜索,是二叉空间划分树的一个特例.通常,对于维度为k,数据点数为N的数据集,k-d tree适用于N≫2k的情形. 1)k-d tree算法原理k-d tree是每个节点均为k维数值点的二叉树,其上的每个节点代表一个超平面,该超平面垂直于当前划分维度的坐标轴,并在该…