HDU 1426 dancing links解决数独问题】的更多相关文章

题目大意: 这是一个最简单的数独填充题目,题目保证只能产生一种数独,所以这里的初始9宫格较为稠密,可以直接dfs也没有问题 但最近练习dancing links,这类数据结构解决数独无疑效率会高很多 dancing links的数独限制条件是: 1.每行有9个元素,共9行 对应dlx81列 2.每列有9个元素,共9行 对应dlx81列 3.每个九宫格有9个元素,共9行 对应dlx81列 4.81个格子,每个格子最多有一个数 #include <iostream> #include <cs…
hiho一下第102周的题目. 原题地址:http://hihocoder.com/problemset/problem/1321 题意:输入一个9*9数独矩阵,0表示没填的空位,输出这个数独的答案. 提示已经讲解的很清楚了.稍微整理下思路.最后附AC代码. 一.Dancing Links解决精确覆盖问题.      1.精确覆盖问题         给定一个n行,m列的01矩阵.从中选择若干行使得每一列有且恰好只有一个1. 例如: 答案是选择2,3,4行. 2.DancingLinks求解精确…
abastract:利用dancing links 解决精确覆盖问题,例如数独,n皇后问题:以及重复覆盖问题. 要学习dacning links 算法,首先要先了解该算法适用的问题,精确覆盖问题和重复覆盖问题等,下面先了解精确覆盖问题和重复覆盖问题. 精确覆盖问题 何为精确覆盖问题 在一个全集X中若干子集的集合为S,精确覆盖(Exactcover)是指,S的子集S*,满足X中的每一个元素在S*中恰好出现一次. 定义 满足以下条件的集合为一个精确覆盖:  S*中任意两个集合没有交集,即X中的元素在…
\(\\\) Definitions 双向链表:记录前后两个指针的链表,每个顺序关系都有双向的指针维护. \(Dancing\ Links\):双向十字循环链表,建立在二维关系上,每个元素记录上下左右四个指针,形成双向十字顺序关系,并且每行的尾元素的右指针指向该行头元素,每行的头元素的左指针指向该行尾元素,每列同样如此,形成了循环的结构. 精确覆盖问题: 已知全集元素和一些包含部分元素的子集,求出一个子集的集合,使得这个集合中的子集求并是全集,求交是空集. 已知所有的约束条件和一些满足部分约束的…
Dancing Links解决Exact Cover问题. 用到了循环双向十字链表. dfs. 论文一知半解地看了一遍,搜出一篇AC的源码,用注释的方法帮助理解. HIT ACM 感谢源码po主.链接如下: http://blog.csdn.net/yysdsyl/article/details/4266876 #include <iostream> #include <cstdio> using namespace std; const int INT_MAX = 2147483…
在“跳跃的舞者,舞蹈链(Dancing Links)算法——求解精确覆盖问题”一文中介绍了舞蹈链(Dancing Links)算法求解精确覆盖问题. 本文介绍该算法的实际运用,利用舞蹈链(Dancing Links)算法求解数独 在前文中可知,舞蹈链(Dancing Links)算法在求解精确覆盖问题时效率惊人. 那利用舞蹈链(Dancing Links)算法求解数独问题,实际上就是下面一个流程 1.把数独问题转换为精确覆盖问题 2.设计出数据矩阵 3.用舞蹈链(Dancing Links)算法…
出处:http://www.cnblogs.com/grenet/p/3163550.html 在“跳跃的舞者,舞蹈链(Dancing Links)算法——求解精确覆盖问题”一文中介绍了舞蹈链(Dancing Links)算法求解精确覆盖问题. 本文介绍该算法的实际运用,利用舞蹈链(Dancing Links)算法求解数独 在前文中可知,舞蹈链(Dancing Links)算法在求解精确覆盖问题时效率惊人. 那利用舞蹈链(Dancing Links)算法求解数独问题,实际上就是下面一个流程 1.…
利用 Dancing Link 来解数独 详细的能够看    lrj 的训练指南 和 < Dancing Links 在搜索中的应用 >这篇论文 Dancing Link 来求解数独 , 是通过求解精确覆盖 精确覆盖就是给出一个 01 矩阵 , 要求我们选择一些行 , 使得每一列有且仅有一个 1 对于数独问题 , 行就是我们的选择 , 即在第 i 行 第 j 列 放上 数字 k , 所以我们最多有 i * j * k 中选择 假设某些位置( x , y  )已经放了数字 a , 那么我们的选择…
分析: dlx重复覆盖的巧用,重复覆盖的原理恰好符合本题的筛选方式,即选择一个数后,该数的倍数或约数可以保证在之后的搜索中不会被选择 于是修改一下启发函数,求解最大的重复覆盖即可.   其实不一定不被选择,只是选择以后,要么达不成目标,要不达到目标,也不如不选择更优   举下面的例子 3 2 3 6 答案一看就是 2 初始的dancing links的表示是这样的       2   3   6 2    1   0   1 3    0   1   1 6    1   1   1 然后肯定先…
就是dancing links 求最小支配集,重复覆盖 精确覆盖时:每次缓存数据的时候,既删除行又删除列(这里的删除列,只是删除表头) 重复覆盖的时候:只删除列,因为可以重复覆盖 然后重复覆盖有一个估价函数,这个函数很强大,可以进行强力剪枝 这个估价函数的意思是,搜索到当前时,至少还需要删除几行,就可以完全覆盖了 这个至少得意思是最优删: 选择一列,假设覆盖这一列的有许多行,假设这些行覆盖的所有列都是一行覆盖的,然后记录数量 然后重复操作,直到全部覆盖,所以这个数量就是最少要的数量 (估价函数很…