Linear Regression_最小二乘(LMS)】的更多相关文章

%% Machine Learining----Linear Regression close all clear %%data load Year = linspace(,,); Price = [,,11.28,12.9]; %%train data alpha = 0.01; theta = [,]; obj_old = 1e10; tor = 1e-; tic; : delta = zeros(,); objective = ; hypothesis = theta() + theta(…
Logistic Regression 之前我们讨论过回归问题,并且讨论了线性回归模型.现在我们来看看分类问题,分类问题与回归问题类似,只不过输出变量一个是离散的,一个是连续的.我们先关注二分类问题,假设 输出变量 y 只能取 0 或者 1 两个值,直观上,对于所有的输入变量,我们都希望可以映射到 [0-1] 的范围内, 为此,我们可以建立如下的函数: hθ(x)=g(θTx)=11+e−θTx 其中, g(z)=11+e−z 称之为 logistic 函数 或者 sigmoid 函数. 很容易…
http://blog.sina.com.cn/s/blog_98238f850102w7ik.html 目前所有的ANN神经网络算法大全 (2016-01-20 10:34:17) 转载▼ 标签: it   概述 1 BP神经网络 1.1 主要功能 1.2 优点及其局限性 2 RBF(径向基)神经网络 2.1 主要功能 2.2 优点及其局限性 3 感知器神经网络 3.1 主要功能 3.2 优点及其局限性 4 线性神经网络 4.1 主要功能 4.2优点及其局限性 5自组织神经网络 5.1 自组织…
在之前的文章<机器学习---线性回归(Machine Learning Linear Regression)>中说到,使用最小二乘回归模型需要满足一些假设条件.但是这些假设条件却往往是人们容易忽略的地方.如果不考虑模型的适用情况,就只会得到错误的模型.下面来看一下,使用最小二乘回归模型需要满足哪些假设,以及如果不满足这些假设条件会产生怎样的后果. 最小二乘回归模型的5个基本假设: 自变量(X)和因变量(y)线性相关 自变量(X)之间相互独立 误差项(ε)之间相互独立 误差项(ε)呈正态分布,期…
在<机器学习---线性回归(Machine Learning Linear Regression)>一文中,我们主要介绍了最小二乘线性回归算法以及简单地介绍了梯度下降法.现在,让我们来实践一下吧. 先来回顾一下用最小二乘法求解参数的公式:. (其中:,,) 再来看一下随机梯度下降法(Stochastic Gradient Descent)的算法步骤: 除了算法中所需的超参数α(学习速率,代码中写为lr)和epsilon(误差值),我们增加了另一个超参数epoch(迭代次数).此外,为方便起见,…
对于一般多项式: K为多项式最高项次,a为不确定的常数项,共k+1个; 有离散数据集对应,其方差: β为,方差函数S对β自变量第j个参数的梯度(偏导数): 当以上梯度为零时,S函数值最小,即: 中的每个每个偏导数构成一个等式: ... 则: ... 变为矩阵形式: 这样就变成线性方程求解形式,可用高斯消元等方法求得,注意在计算过程中要判断对角线上的值是否为零,如果等于零可以通过换行的方法解决; /// <summary> /// Function y = a0+a1*x+a2*x^2+ ...…
1.线性回归介绍 X指训练数据的feature,beta指待估计得参数. 详细见http://zh.wikipedia.org/wiki/%E4%B8%80%E8%88%AC%E7%BA%BF%E6%80%A7%E6%A8%A1%E5%9E%8B 使用最小二乘法拟合的普通线性回归是数据建模的基本方法. 令最小二乘项的偏导为0(为0时RSS项最小),求Beta估计值,得到最小二乘的向量形式. 最小二乘其实就是找出一组参数beta使得训练数据到拟合出的数据的欧式距离最小.如下图所示,使所有红点(训练…
最小二乘问题: 结合之前给出向量空间中的正交.子空间W.正交投影.正交分解定理.最佳逼近原理,这里就可以比较圆满的解决最小二乘问题了. 首先我们得说明一下问题本身,就是在生产实践过程中,对于巨型线性方程组Ax=b,可能是无解的,但是我们就是迫切的需要一个解,满足这个解是方程的最近似解. 下面我们综合之前给出了一系列概念.定理,来解决这个问题. 首先我们需要给出最近似解的定义: 我们需要站在新的角度来解读线性方程组Ax=b,这样能够帮助我们更好的解决问题. 上文已经给出最小二乘问题最一般化的解法,…
(整理自AndrewNG的课件,转载请注明.整理者:华科小涛@http://www.cnblogs.com/hust-ghtao/) 1.问题的引出 先从一个简单的例子说起吧,房地产公司有一些关于Portland,Oregon的房子信息,下表是房子的面积和价格的对照表: Living area(feet^2) Price(1000﹩s) 2104 400 1600 330 2400 369 1416 232 3000 540 …… …… 将点画在二维坐标下表示: 那么问题就来了,面积为2000的…
转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/ 实例 首先举个例子,假设我们有一个二手房交易记录的数据集,已知房屋面积.卧室数量和房屋的交易价格,如下表: 假如有一个房子要卖,我们希望通过上表中的数据估算这个房子的价格.这个问题就是典型的回归问题,这边文章主要讲回归中的线性回归问题. 线性回归(Linear Regression) 首先要明白什么是回归.回归的目的是通过几个已知数据来预测另一个数值型数据的目标值.假设特征和结果满足线性关系,即满足一个…