[BZOJ3527][ZJOI2014]力 FFT+数学】的更多相关文章

题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3527 首先卷积的形式是$h(i)=\sum_{i=0}^jf(i)g(i-j)$,如果我们可以把式子整理成这个样子再套上FFT就成功了. $$E_i=\sum_{j<i}\frac{q_j}{(j-i)^2}-\sum_{j>i}\frac{q_j}{(i-j)^2}$$ $$E_i=\sum_{j=0}^{i-1}\frac{q_j}{(j-i)^2}^2-\sum_{j=0}^{n…
bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i>j}\frac{q_i}{(i-j)^2}\) \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}\) \(\sum\limits _{i=1}^{j-1} q_i*\frac{1}{(j-i)^2}\) fft都能算出来 \(\sum\limits _{i=j+1}^{n…
题目描述 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. 输入 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. n≤100000,0<qi<1000000000 输出 n行,第i行输出Ei.与标准答案误差不超过1e-2即可. 样例输入 5 4006373.885184 15375036.435759 1717456.469144 8514941.004912 1410681.345880 样例输出 -16838672.693 3439.793 7509018…
力 bzoj-3527 Zjoi-2014 题目大意:给定长度为$n$的$q$序列,定义$F_i=\sum\limits_{i<j}\frac{q_iq_j}{(i-j)^2}-\sum\limits_{i>j}\frac{q_iq_j}{(i-j)^2}$.求所有的$E_i=\frac{F_i}{q_i}$. 注释:$1\le n\le 10^5$,$0\le q\le 10^9$. 想法:我们可以把$F_i$中每一项上的$q_i$删掉因为我们求得$E_i$除掉了. 进而我们考虑如何求解$F…
3527: [Zjoi2014]力 Time Limit: 30 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 1544  Solved: 899[Submit][Status][Discuss] Description 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei.   Input 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. n≤100000,0<qi<1000000000     Output…
[参考]「ZJOI2014」力 - FFT by menci [算法]FFT处理卷积 [题解]将式子代入后,化为Ej=Aj-Bj. Aj=Σqi*[1/(i-j)^2],i=1~j-1. 令f(i)=qi,g(i)=1/i^2,定义f(0)=g(0)=0(方便卷积). Aj=Σf(i)*g(j-i),i=0~j-1,标准的卷积形式. 而对于Bj,将g反转后就是和为i+n-1的标准卷积形式了. 第一次FFT后,记得对a数组后半部分清零后再进行第二次FFT. 复杂度O(n log n). #incl…
题目 P3338 [ZJOI2014]力 做法 普通卷积形式为:\(c_k=\sum\limits_{i=1}^ka_ib_{k-i}\) 其实一般我们都是用\(i=0\)开始的,但这题比较特殊,忽略那部分,其他的直接按下标存下来,反正最后的答案是不变的 好了步入正题吧,我们定义 \[F_j=\sum\limits_{i<j}\dfrac{q_iq_j}{(i-j)^2}-\sum\limits_{i<j}\dfrac{q_iq_j}{(i-j)^2}\] 求\(E_i=\dfrac{F_i}…
2016-06-01  21:36:44 题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3527 我就是一个大傻叉 微笑脸 #include<bits/stdc++.h> #define inf 1000000000 #define ll long long #define N 500005 using namespace std; int read(){ ,f=;char ch=getchar(); ;ch=getchar();} +c…
先写个简要题解:本来去桂林前就想速成一下FFT的,结果一直没有速成成功,然后这几天断断续续看了下,感觉可以写一个简单一点的题了,于是就拿这个题来写,之前式子看着别人的题解都不太推的对,然后早上6点多推了一个多小时终于发现了一个很巧妙的方法,首先问题的关键在于后半个式子,因为显然前半个式子很容易想到卷积的形式,那么直接FFT就好了,但是后半部分不好考虑,一般肯定是通过类似换元的做法化到后来得出结论,到中间有一步就有点难度,那个地方我一直卡.后来突然想到,既然前半部分i<j时那么好处理,那么i>j…
传送门 fftfftfft菜题. 题意简述:给一个数列aia_iai​,对于i=1→ni=1\rightarrow ni=1→n求出ansi=∑i<jai(i−j)2−∑i>jai(i−j)2ans_i=\sum_{i<j}\frac{a_i}{(i-j)^2}-\sum_{i>j}\frac{a_i}{(i-j)^2}ansi​=∑i<j​(i−j)2ai​​−∑i>j​(i−j)2ai​​ 思路: 考虑分开求减号前后的两组和. 前面的直接是一个卷积的形式,后面的可以…