用.Net写的地图编辑器,最近在一个长时间使用的策划手里频繁挂掉.定位到原因应该是GDI泄露.但在几千行代码里手工寻找泄漏点实在是有些困难,直到在网上找到了这个检测GDI泄露的工具GDILeaks.它的强大之处,在于可以将程序里当前占用的gdi位图.dc用图形格式显示出来,这样,泄露点基本上就直接展示在你眼前了. 另外,关于泄露为什么会发生,我还有些疑问.经检查,泄漏点是这样的C#代码 void doSomeThing() { Bitmap tmpBmp = new Bitmap(100,100…
前一段在一个仿QQ的IM通讯工具中加入屏幕截图以及截图编辑功能,但是测试中发现当连续进行几十次截图后,系统会出现白屏,开始以为和win7经常闪白有关,屏幕截图截取到闪白的瞬间导致白屏,后来发现是GDI内存不足,申请不到GDI内存贴图失败所致.于是找了GDI泄露的工具,对程序进行GDI内存检测,下面就介绍两款GDI泄露检测工具的用法以及GDI编程的一些注意事项. 第一款:GDIndicator 支持win7+xp 下载地址 1.启动待检测的程序和GDIndicator,启动顺序没有要求,之后F5刷…
目标检测与识别是计算机视觉中最常见的挑战之一.属于高级主题. 本章节将扩展目标检测的概念,首先探讨人脸识别技术,然后将该技术应用到显示生活中的各种目标检测. 1 目标检测与识别技术 为了与OpenCV 学习笔记 05 人脸检测和识别进行区分:需重新说明一下什么是目标检测. 目标检测是一个程序,它用来确定图像的某个区域是否有要识别的对象,对象识别是程序识别对象的能力.识别通常只处理已检测到对象的区域.若人们总是会在有人脸图像的区域去识别人脸. 在计算机视觉中有很多目标检测和识别的技术,本章会用到:…
本节将介绍 Haar 级联分类器,通过对比分析相邻图像区域来判断给定图像或子图像与已知对象是否匹配. 本章将考虑如何将多个  Haar 级联分类器构成一个层次结构,即一个分类器能识别整体区域(如人脸),而其他的分类器可识别小的区域(如鼻子.眼睛和嘴). 1 Haar 级联的概念 图像会因灯光.视角.视距.摄像头抖动以及数字噪声的变化而使得细节变得不稳定.所以提取图像的细节对产生稳定分类结果和跟踪结果很有作用.这些提取的结果被称为特征. 专业的表述为:从图像数据中提取特征.虽然任意像素都可能影响多…
原文链接:http://blog.csdn.net/myarrow/article/details/51878004 1. 基本概念 1)CNN:Convolutional Neural Networks 2)FC:Fully Connected 3)IoU:Intersection over Union (IoU的值定义:Region Proposal与Ground Truth的窗口的交集比并集的比值,如果IoU低于0.5,那么相当于目标还是没有检测到) 4)ICCV:Internationa…
1.介绍 目标检测是指任意给定一张图像,判断图像中是否存在指定类别的目标,如果存在,则返回目标的位置和类别置信度 如下图检测人和自行车这两个目标,检测结果包括目标的位置.目标的类别和置信度 因为目标检测算法需要输出目标的类别和具体坐标,因此在数据标签上不仅要有目标的类别,还要有目标的坐标信息 可见目标检测比图像分类算法更复杂.图像分类算法只租要判断图像中是否存在指定目标,不需要给出目标的具体位置:而目标检测算法不仅需要判断图像中是否存在指定类别的目标,还要给出目标的具体位置 因此目标检测算法实际…
例程:detect_indent_fft.hdev 说明:这个程序展示了如何利用快速傅里叶变换(FFT)对塑料制品的表面进行目标(缺陷)的检测,大致分为三步: 首先,我们用高斯滤波器构造一个合适的滤波器(将原图通过高斯滤波器滤波): 然后,将原图和构造的滤波器进行快速傅里叶变换: 最后,利用形态学算子将缺陷表示在滤波后的图片上(在缺陷上画圈). 注:代码中绿色部分为个人理解和注释,其余为例程中原有代码 *Initialization(初始化) dev_updata_off() //这一句包含如下…
1 环境设置: win10 python 3.6.8 opencv 4.0.1 2 尝试的方法 在学习人脸识别中,遇到了没有 cv2 中没有 face 属性.在网上找了几个方法,均没有成功解决掉该问题. 2.1 方法一 来源:module 'cv2.cv2' has no attribute 'face' pip install opencv-contrib-python 重启sublime,在运行后依旧报错. 当然了,这个不成功可能是由于opencv 与 contrib 版本不匹配造成的. 2…
参考大佬博文:blog.csdn.net/jia20003/article/details/7724530 lps-683.iteye.com/blog/2254368 openCV里有两个函数(比较常用)处理霍夫变换直线检测,有什么区别呢. CvHoughLine:是用于标准的霍夫变换方法 CvHoughLine2:可以使用三种霍夫变换的方法,分别是标准霍夫变换(SHT).多尺度标准霍夫变换(MSHT).累计概率霍夫变换(PPHT). 函数原型: CvSeq* cvHoughLines2( C…
不多说,直接上干货! 本文一系列目标检测算法:RCNN, Fast RCNN, Faster RCNN代表当下目标检测的前沿水平,在github都给出了基于Caffe的源码. •   RCNN RCNN(Regions with CNN features)是将CNN方法应用到目标检测问题上的一个里程碑,由年轻有为的RBG大神提出,借助CNN良好的特征提取和分类性能,通过RegionProposal方法实现目标检测问题的转化. 算法可以分为四步:         1)候选区域选择 Region P…