求 LCA 的三种方法】的更多相关文章

(YYL: LCA 有三种求法, 你们都知道么?) (众神犇: 这哪里来的傻叉...) 1. 树上倍增 对于求 LCA, 最朴素的方法是"让两个点一起往上爬, 直到相遇", "如果一开始不在同一深度, 先爬到同一深度". 树上倍增求 LCA 的方法同样基于这个道理, 只不过利用了倍增思想从而加速了"向上爬"的操作. 也就是说, 每次向上爬的高度不是 1, 而是 2 的幂. 我们用 $f(i, j)$ 表示从节点 $i$ 向上爬 $2^j$ 的高度…
清空StringBuilder的三种方法及效率 大家知道对于字符串频繁拼接是使用stringbuilder.Append方法比使用string+=方法效率高很多,但有时需要清空stringbuilder时却不知道怎么清空,因为它没有clear或empty的方法.那用什么方法呢?在网上搜了一下大概一下三种方法. 1.Remove 例:             StringBuilder val = new StringBuilder();             val.Append("....&…
先说一下为什么要分表当一张的数据达到几百万时,你查询一次所花的时间会变多,如果有联合查询的话,我想有可能会死在那儿了.分表的目的就在于此,减小数据库的负担,缩短查询时间.根据个人经验,mysql执行一个sql的过程如下:1,接收到sql;2,把sql放到排队队列中 ;3,执行sql;4,返回执行结果.在这个执行过程中最花时间在什么地方呢?第一,是排队等待的时间,第二,sql的执行时间.其实这二个是一回事,等待的同时,肯定有sql在执行.所以我们要缩短sql的执行时间. mysql中有一种机制是表…
方法1(数据类型)(最小值+Math.random()*(最大值-最小值+1))例:(int)(1+Math.random()*(10-1+1))从1到10的int型随数 方法2获得随机数for (int i=0;i<30;i++){System.out.println((int)(1+Math.random()*10));}(int)(1+Math.random()*10)通过java.Math包的random方法得到1-10的int随机数公式是:最小值---最大值(整数)的随机数(类型)最小…
主成分分析,即Principal Component Analysis(PCA),是多元统计中的重要内容,也广泛应用于机器学习和其它领域.它的主要作用是对高维数据进行降维.PCA把原先的n个特征用数目更少的k个特征取代,新特征是旧特征的线性组合,这些线性组合最大化样本方差,尽量使新的k个特征互不相关.关于PCA的更多介绍,请参考:https://en.wikipedia.org/wiki/Principal_component_analysis. PCA的主要算法如下: 组织数据形式,以便于模型…
本篇博文给大家介绍前N个正整数的排列求解的三种方式.第一种是暴力求解法:第二种则另外声明了一个长度为N的数组,并且将已经排列过的数字保存其中:第三种方式则采用了另外一种思路,即首先获取N个整数的升序排列,然后对其位置进行随机交换以达到前N个整数的随机排列的目的.首先我们来看看第一种方式,具体代码如下: import java.util.Random; import org.junit.Test; public class App { private int n = 100000; @Test p…
我们可能会有些需求要求MapReduce的输出全局有序,这里说的有序是指Key全局有序.但是我们知道,MapReduce默认只是保证同一个分区内的Key是有序的,但是不保证全局有序.基于此,本文提供三种方法来对MapReduce的输出进行全局排序. |文章目录| |: |1.生成测试数据 |2.使用一个Reduce进行排序 |3.自定义分区函数实现全局有序 1.生成测试数据 在介绍如何实现之前,我们先来生成一些测试数据,实现如下: #!/bin/sh for i in {1..100000};d…
上代码,本文用了三种方法实现,时间复杂度不一样,空间复杂度都是o(1): public class ArrayKMove { /** * 问题:数组的向左k平移,k小于数组长度 * @param args */ public static void main(String[] args) { // TODO Auto-generated method stub ArrayKMove kmove = new ArrayKMove(); kmove.methodOne(); kmove.method…
服务器文档下载zip格式   刚好这次项目中遇到了这个东西,就来弄一下,挺简单的,但是前台调用的时候弄错了,浪费了大半天的时间,本人也是菜鸟一枚.开始吧.(MVC的) @using Rattan.Core.Utility;@{ string ButtonScript = string.Empty;}@if (Rattan.Basic.Globals.GetIsAuth(ViewBag.AuthValues, "QuickExport")){ ButtonScript = @"…
主成分分析(PCA) vs 多元判别式分析(MDA) PCA和MDA都是线性变换的方法,二者关系密切.在PCA中,我们寻找数据集中最大化方差的成分,在MDA中,我们对类间最大散布的方向更感兴趣. 一句话,通过PCA,我们将整个数据集(不带类别标签)映射到一个子空间中,在MDA中,我们致力于找到一个能够最好区分各类的最佳子集.粗略来讲,PCA是通过寻找方差最大的轴(在一类中,因为PCA把整个数据集当做一类),在MDA中,我们还需要最大化类间散布. 在通常的模式识别问题中,MDA往往在PCA后面.…