最长不下降子序列nlogn算法详解】的更多相关文章

今天花了很长时间终于弄懂了这个算法……毕竟找一个好的讲解真的太难了,所以励志我要自己写一个好的讲解QAQ 这篇文章是在懂了这个问题n^2解决方案的基础上学习. 解决的问题:给定一个序列,求最长不下降子序列的长度(nlogn的算法没法求出具体的序列是什么) 定义:a[1..n]为原始序列,d[k]表示长度为k的不下降子序列末尾元素的最小值,len表示当前已知的最长子序列的长度. 初始化:d[1]=a[1]; len=1; (0个元素的时候特判一下) 现在我们已知最长的不下降子序列长度为1,末尾元素…
C - DP Crawling in process... Crawling failed Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status Practice HDU 1025 uDebug Description   Input   Output   Sample Input   Sample Output   Hint   Description JGShini…
最长不下降子序列实现: 利用序列的单调性. 对于任意一个单调序列,如 1 2 3 4 5(是单增的),若这时向序列尾部增添一个数 x,我们只会在意 x 和 5 的大小,若 x>5,增添成功,反之则失败.由于普通代码是从头开始比较,而 x 和 1,2,3,4 的大小比较是没有用处的,这种操作只会造成时间的浪费,所以效率极低.对于单调序列,只需要记录每个序列的最后一个数,每增添一个数 x,直接比较 x 和末尾数的大小.只有最后一个数才是有用的,它表示该序列的最大限度值. 实现方法就是新开一个数组 d…
b[i]表示长度为i的最长不下降子序列的最小末尾元素的值显然它是单调递增的,满足二分性质,然后就可以愉快地二分啦. #include<iostream> #include<cstdio> #include<queue> #include<algorithm> #include<cmath> #include<ctime> #include<set> #include<map> #include<stack…
最长上升子序列 时间限制: 10 Sec   内存限制:128 MB 题目描述 给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.我们想知道此时最长上升子序列长度是多少? 输入 第一行一个整数N,表示我们要将1到N插入序列中,接下是N个数字,第k个数字Xk,表示我们将k插入到位置Xk(0<=Xk<=k-1,1<=k<=N) 输出 1行,表示最长上升子序列的长度是多少. 样例输入 3 0 0 2 样例输出 2 提示 100%的数据 n&l…
显然n方算法在比赛中是没有什么用的(不会这么容易就过的),所以nlogn的算法尤为重要. 分析: 开2个数组,一个a记原数,f[k]表示长度为f的不下降子序列末尾元素的最小值,tot表示当前已知的最长子序列的长度 考虑进来一个数a[i], 1.如果a[i]>=f[tot],那么接上去即可 2.如果这个元素小于f[tot]呢?说明它不能接在最后一个后面了.那我们就看一下它该接在谁后面. 准确的说,并不是接在谁后面.而是替换掉谁.因为它接在前面的谁后面都是没有意义的,再接也超不过最长的tot,所以是…
我又被虐了... A. 最长不下降子序列 考场打的错解,成功调了两个半小时还是没A, 事实上和正解的思路很近了,只是没有想到直接将前$D$个及后$D$个直接提出来 确实当时思路有些紊乱,打的时候只是将前两个及后两个循环节提出来, 因为该题中$D$的范围很小,因此最长公共子序列中最多只有$D$个不同的数 所以我们可以想到中间的一段相同的数一定是可以移成中间的一段数,本质是一样的 B. 完全背包问题 没想到是到图论题啊啊 考虑到$w$的范围很大,然而$v$的范围很小,于是我们开始转化原来的$DP$方…
一.简单的O(n^2)的算法 很容易想到用动态规划做.设lis[]用于保存第1~i元素元素中最长不下降序列的长度,则lis[i]=max(lis[j])+1,且num[i]>num[j],i>j.然后在lis[]中找到最大的一个值,时间复杂度是O(n^2). 代码实现: int Longest_Increasing(int num[],int n){ int lis[n],i,j; for(i=0;i<n;i++){ lis[i]=1; for(j=0;j<i;j++) if(nu…
分析: 定义状态dp[i]表示长度为i的最长不下降子序列最大的那个数. 每次进来一个数直接找到dp数组第一个大于于它的数dp[x],并把dp[x - 1]修改成 那个数.就可以了 AC代码: # include <iostream> # include <cstdio> # include <cstring> # include <algorithm> using namespace std; ; int dp[N],n,pre[N],x,y,xh[N],a…
先学习下LIS最长上升子序列 ​ 看了大佬的文章OTZ:最长上升子序列 (LIS) 详解+例题模板 (全),其中包含普通O(n)算法*和以LIS长度及末尾元素成立数组的普通O(nlogn)算法,当然还有本文涉及的树状数组维护后的O(nlogn)算法*. 再贴一个容易理解的树状数组算法:https://www.cnblogs.com/war1111/p/7682228.html 再看看这道题 原题链接:http://acm.hnucm.edu.cn/JudgeOnline/problem.php?…