最近在学习Pytorch v1.3最新版和Tensorflow2.0. 我学习Pytorch的主要途径:莫烦Python和Pytorch 1.3官方文档 ,Pytorch v1.3跟之前的Pytorch不太一样,比如1.3中,Variable类已经被弃用了(目前还可以用,但不推荐),tensor可以直接调用backward方法进行反向求导,不需要再像之前的版本一样必须包装成Variable对象之后再backward. Tensorflow2.0的学习可以参考北大学生写的教程:https://tf…
基础 在参考①中我们详细介绍了没有隐含层的神经网络结构,该神经网络只有输入层和输出层,并且输入层和输出层是通过全连接方式进行连接的.具体结构如下: 我们用此网络结构基于MNIST数据集(参考②)进行训练,在MNIST数据集中每张图像的分辨率为28*28,即784维,对应于上图中的x; 而输出为数字类别,即0~9,因此上图中的y的维度维10.因此权重w的维度为[784, 10],wi,j代表第j维的特征对应的第i类的权重值,主要是为了矩阵相乘时计算的方便,具体见下面代码. 训练过程 1.训练过程中…
前言 最近刚开始接触机器学习,记录下目前的一些理解,以及看到的一些好文章mark一下 1.MINST数据集 MNIST 数据集来自美国国家标准与技术研究所, National Institute of Standards and Technology (NIST). 训练集 (training set) 由来自 250 个人手写的数字构成, 其中 50% 是高中学生, 50% 来自人口普查局 (the Census Bureau) 的工作人员. 测试集(test set) 也是同样比例的手写数字…
如何利用tensorflow的object_detection api开源框架训练基于自己数据集的模型(Windows10系统) 一.环境配置 1. Python3.7.x(注:我用的是3.7.3.安装好后把python.exe的路径加入到全局环境变量path中,方便后续命令) 2. Tensorflow1.13.1(注:目前暂时还不能用tensorflow2.x,因为开源社区还没有针对Windows10+tensorflow2.x的object_detection api参考资料.) 3. P…
基于COCO数据集验证的目标检测算法天梯排行榜 AP50 Rank Model box AP AP50 Paper Code Result Year Tags 1 SwinV2-G (HTC++) 63.1 Swin Transformer V2: Scaling Up Capacity and Resolution Link 2021 Swin-Transformer 2 Florence-CoSwin-H 62.4 Florence: A New Foundation Model for C…
数据清洗及可视化 实验内容 数据清洗是数据分析中非常重要的一部分,也最繁琐,做好这一步需要大量的经验和耐心.这门课程中,我将和大家一起,一步步完成这项工作.大家可以从这门课程中学习数据清洗的基本思路以及具体操作,同时,练习使用 Pandas 数据分析工具.Seaborn 统计分析可视化工具. 实验知识点 离群点分析 缺失值处理 偏态分布数据处理 实验步骤 环境准备 下载数据 !wget -nc http://labfile.oss.aliyuncs.com/courses/1001/train.…
Google在TensorFlow1.0,之后推出了一个叫slim的库,TF-slim是TensorFlow的一个新的轻量级的高级API接口.这个模块是在16年新推出的,其主要目的是来做所谓的“代码瘦身”.它类似我们在TensorFlow模块中所介绍的tf.contrib.lyers模块,将很多常见的TensorFlow函数进行了二次封装,使得代码变得更加简洁,特别适用于构建复杂结构的深度神经网络,它可以用了定义.训练.和评估复杂的模型. 这里我们为什么要过来介绍这一节的内容呢?主要是因为Ten…
使用说明 参数 sklearn.metrics.classification_report(y_true, y_pred, labels=None, target_names=None, sample_weight=None, digits=2, output_dict=False) y_true:1 维数组,真实数据的分类标签 y_pred:1 维数组,模型预测的分类标签 labels:列表,需要评估的标签名称 target_names:列表,指定标签名称 sample_weight:1 维数…
分类问题 在机器学习中,主要有两大类问题,分别是分类和回归.下面我们先主讲分类问题. MINST 这里我们会用MINST数据集,也就是众所周知的手写数字集,机器学习中的 Hello World.sk-learn 提供了用于直接下载此数据集的方法: from sklearn.datasets import fetch_openml minst = fetch_openml('mnist_784', version=1) minst.keys() >dict_keys(['data', 'targe…
No.1. 通常情况下,直接将训练得到的模型应用于真实环境中,可能会存在很多问题 No.2. 比较好的解决方法是,将原始数据中的大部分用于训练数据,而留出少部分数据用于测试,即,将数据集切分成训练数据集和测试数据集两部分,先通过训练数据集得到一个模型,然后通过测试数据集来检验模型的性能是否满足我们的要求,根据测试结果的好坏判断模型是否需要进行改进和优化 No.3. 我们通过鸢尾花数据集来测试kNN算法的分类准确性,首先是数据准备工作 No.4. 我们可以将上述过程封装到函数中 No.5. 调用我…