keras中loss与val_loss的关系】的更多相关文章

loss是训练集的损失值,val_loss是测试集的损失值 以下是loss与val_loss的变化反映出训练走向的规律总结: train loss 不断下降,test loss不断下降,说明网络仍在学习;(最好的) train loss 不断下降,test loss趋于不变,说明网络过拟合;(max pool或者正则化) train loss 趋于不变,test loss不断下降,说明数据集100%有问题;(检查dataset) train loss 趋于不变,test loss趋于不变,说明学…
用keras搭好模型架构之后的下一步,就是执行编译操作.在编译时,经常需要指定三个参数 loss optimizer metrics 这三个参数有两类选择: 使用字符串 使用标识符,如keras.losses,keras.optimizers,metrics包下面的函数 例如: sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', opt…
在keras中保存模型有几种方式: (1):使用callbacks,可以保存训练中任意的模型,或选择最好的模型 logdir = './callbacks' if not os.path.exists(logdir): os.mkdir(logdir) output_model_file = os.path.join(logdir, "xxxx.h5") callbacks = [ tf.keras.callbacks.ModelCheckpoint(output_model_file…
写这篇博客的原因主要是为了总结下在深度学习中我们常会遇到的一些问题,以及不知道如何解决,我准备把这个部分作为一个系列,为了让大家少走一些坑,对于本博客有什么错误,欢迎大家指出,下面切入正题吧. 1. 深度学习,一个令人头疼的问题就是如何调参? 简而言之,如果数据集复杂的话,那么就要增加网络的层数,模型欠拟合了,加节点. 2. 关于验证集的loss曲线和acc曲线震荡,不平滑问题 出现loss震荡不平滑的原因可能如下: (1) 学习率可能太大 (2) batch size太小 (3) 样本分布不均…
一.简介 Keras是有着自主的一套前端控制语法,后端基于tensorflow和theano的深度学习框架,因为其搭建神经网络简单快捷明了的语法风格,可以帮助使用者更快捷的搭建自己的神经网络,堪称深度学习框架中的sklearn,本文就将基于Keras,以手写数字数据集MNIST为演示数据,对多层感知机(MLP)的训练方法进行一个基本的介绍,而关于多层感知机的相关原理,请移步数据科学学习手札34:https://www.cnblogs.com/feffery/p/8996623.html,本文不再…
一.问题: keras中不能在每个epoch实时显示学习速率learning rate,从而方便调试,实际上也是为了调试解决这个问题:Deep Learning 31: 不同版本的keras,对同样的代码,得到不同结果的原因总结 二.解决方法 1.把下面代码加入keras文件callbacks.py中: class DisplayLearningRate(Callback): '''Display Learning rate . ''' def __init__(self): super(Dis…
在统计学中,损失函数是一种衡量损失和错误(这种损失与“错误地”估计有关,如费用或者设备的损失)程度的函数.假设某样本的实际输出为a,而预计的输出为y,则y与a之间存在偏差,深度学习的目的即是通过不断地训练迭代,使得a越来越接近y,即 a - y →0,而训练的本质就是寻找损失函数最小值的过程. 常见的损失函数为两种,一种是均方差函数,另一种是交叉熵函数.对于深度学习而言,交叉熵函数要优于均方差函数,原因在于交叉熵函数配合输出层的激活函数如sigmoid或softmax函数能更快地加速深度学习的训…
[知乎作答]·关于在Keras中多标签分类器训练准确率问题 本文来自知乎问题 关于在CNN中文本预测sigmoid分类器训练准确率的问题?中笔者的作答,来作为Keras中多标签分类器的使用解析教程. 一.问题描述 关于在CNN中文本预测sigmoid分类器训练准确率的问题? 对于文本多标签多分类问题,目标标签形如[ 0 0 1 0 0 1 0 1 0 1 ].在CNN中,sigmoid分类器训练.测试的准确率的判断标准是预测准确其中一个标签即为预测准确还是怎样.如何使sigmoid分类器的准确率…
作者|Praneet Bomma 编译|VK 来源|https://towardsdatascience.com/visualising-lstm-activations-in-keras-b50206da96ff 你是否想知道LSTM层学到了什么?有没有想过是否有可能看到每个单元如何对最终输出做出贡献.我很好奇,试图将其可视化.在满足我好奇的神经元的同时,我偶然发现了Andrej Karpathy的博客,名为"循环神经网络的不合理有效性".如果你想获得更深入的解释,建议你浏览他的博客…
  学习率是一个控制每次更新模型权重时响应估计误差而调整模型程度的超参数.学习率选取是一项具有挑战性的工作,学习率设置的非常小可能导致训练过程过长甚至训练进程被卡住,而设置的非常大可能会导致过快学习到次优的权重集合或者训练过程不稳定. 迁移学习 我们使用迁移学习将训练好的机器学习模型应用于不同但相关的任务中.这在深度学习这种使用层级链接的神经网络中非常有效.特别是在计算机视觉任务中,这些网络中的前几层倾向于学习较简单的特征.例如:边缘.梯度特征等. 这是一种在计算机视觉任务中被证实过可以产生更好…