[LOJ 3101] [Luogu 5332] [JSOI2019]精准预测(2-SAT+拓扑排序+bitset) 题面 题面较长,略 分析 首先,发现火星人只有死和活两种状态,考虑2-SAT 建图 对于每个火星人,把它按时间和状态拆点,\((i,t,0/1)\)代表第i个火星人在t时刻,0代表活,1代表死.然后按如下方法对每个火星人连边. 1.\((i,t+1,0) → (i,t,0)\),人死了不能复活,所以一个火星人t+1时刻活着,t时刻也一定活着 2.\((i,t,1) → (i,t+1…
设第i个人在t时刻生/死为(x,0/1,t),然后显然能够连上(x,0,t)->(x,0,t-1),(x,1,t)->(x,1,t+1),然后对于每个限制,用朴素的2-SAT连边即可. 但这样的点数达到了O(nT),其实有一种方法可以只把限制的边连接建图,点数为4m,这样可能会被卡常. 有没有更优秀的做法?当然还是有的.对于2-SAT中的边(x,y),若y在2-SAT中无出边,则x->y与x->y的后继等价,于是点数可以控制在2n+2m.然后很容易发现,生.死状态的图均为拓扑图,而…
描述 一条单向的铁路线上,依次有编号为 1, 2, ..., n 的 n 个火车站.每个火车站都有一个级别,最低为 1 级.现有若干趟车次在这条线路上行驶,每一趟都满足如下要求:如果这趟车次停靠了火车站 x,则始发站.终点站之间所有级别大于等于火车站 x 的都必须停靠.(注意:起始站和终点站自然也算作事先已知需要停靠的站点)例如,下表是 5 趟车次的运行情况.其中,前 4 趟车次均满足要求,而第 5 趟车次由于停靠了 3 号火车站(2 级)却未停靠途经的 6 号火车站(亦为 2 级)而不满足要求…
题目 这么明显的限制条件显然是\(\text{2-sat}\) 考虑按照时间拆点,\((0/1,x,t)\)表示\(x\)个人在时间\(t\)是生/死 有一些显然的连边 \[(0,x,t+1)->(0,x,t)\] 就是如果想在\(t+1\)时刻还是活着那必须在\(t\)时刻还活着 \[(1,x,t)->(1,x,t+1)\] 就是如果\(t\)时刻死了,那么\(t+1\)时刻也得是死的 对于第一种限制,显然是连\((1,x,t)->(1,y,t+1)\),别忘了连对称边,就是\(y\)…
洛谷题面传送门 七月份(7.31)做的题了,题解到现在才补,不愧是 tzc 首先不难发现题目中涉及的变量都是布尔型变量,因此可以考虑 2-SAT,具体来说,我们将每个人在每个时刻的可能的状态表示出来.我们开两个二维变量 \(\text{Live}(i,t)\) 表示第 \(i\) 个人第 \(t\) 个时刻还活着,\(\text{Dead}(i,t)\) 则表示第 \(i\) 个人在第 \(t\) 个时刻已经死了,那么题目给出的条件即对应这些布尔变量的一些推导关系,具体来说: 由于一个人死了不能…
组合计数的一道好题.什么非主流题目 题目背景 (背景冗长请到题目页面查看) 题目描述 不妨假设枫叶上有 \(n​\) 个穴位,穴位的编号为 \(1\sim n​\).有若干条有向的脉络连接着这些穴位.穴位和脉络组成一个有向无环图--称之为脉络图(例如图 1),穴位的编号使得穴位 \(1​\) 没有从其他穴位连向它的脉络,即穴位 1 只有连出去的脉络:由上面的故事可知,这个有向无环图存在一个树形子图,它是以穴位 \(1​\) 为根的包含全部 \(n​\) 个穴位的一棵树--称之为脉络树(例如图 2…
P4316 绿豆蛙的归宿 题目背景 随着新版百度空间的上线,Blog宠物绿豆蛙完成了它的使命,去寻找它新的归宿. 题目描述 给出一个有向无环图,起点为1终点为N,每条边都有一个长度,并且从起点出发能够到达所有的点,所有的点也都能够到达终点.绿豆蛙从起点出发,走向终点. 到达每一个顶点时,如果有K条离开该点的道路,绿豆蛙可以选择任意一条道路离开该点,并且走向每条路的概率为 1/K . 现在绿豆蛙想知道,从起点走到终点的所经过的路径总长度期望是多少? 输入输出格式 输入格式: 第一行: 两个整数 N…
Description 现有一台预测机,可以预测当前 \(n\) 个人在 \(T\) 个时刻内的生死关系.关系有两种: \(\texttt{0 t x y}\):如果 \(t\) 时刻 \(x\) 死了,那么 \(y\) 在第 \(t+1\) 时刻也会死亡. \(\texttt{1 t x y}\):如果 \(t\) 时刻 \(x\) 活着,那么 \(y\) 在 \(t\) 时刻就会死亡. 这样的关系共有 \(m\) 条.现在你需要在不违背这些关系的前提下,计算对于每一个人 \(i\),可能可以…
LOJ#3101. 「JSOI2019」精准预测 设0是生,1是死,按2-sat连边那么第一种情况是\((t,x,1) \rightarrow (t + 1,y,1)\),\((t + 1,y, 0) \rightarrow (t,x,0)\) 第二种情况是\((t,x,0) \rightarrow (t,y,1)\),\((t,y,0) \rightarrow(t,x,1)\) 然后\((t,x,0)\)往\((t - 1,x,0)\)连边,\((t,x,1)\)往\((t + 1,x,1)\…
好久没写数据结构了 来补一发 果然写的时候思路极其混乱.... LOJ #2116 Luogu P3241 题意 $ Q$次询问,求树上点的颜色在$ [L,R]$中的所有点到询问点的距离 强制在线 询问次数,树上点数约$ 2·10^5$ $ Solution$ 首先有 $ dist(x,y)=deep(x)+deep(y)-2·deep(lca(x,y))$ 显然这个等式的前两项很容易用前缀和什么的维护 只考虑第三项的话相当于是有边权并且强制在线的「LNOI2014」LCA 用同样的套路将$ d…