设计了两个隐藏层,激活函数是tanh,使用Adam优化算法,学习率随着epoch的增大而调低 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据集 mnist = input_data.read_data_sets("MNIST_data",one_hot=True) #每个批次的大小 batch_size = 32 #计算一共有多少个批次 n_batch =…
一.二次代价函数 1. 形式: 其中,C为代价函数,X表示样本,Y表示实际值,a表示输出值,n为样本总数 2. 利用梯度下降法调整权值参数大小,推导过程如下图所示: 根据结果可得,权重w和偏置b的梯度跟激活函数的梯度成正比(即激活函数的梯度越大,w和b的大小调整的越快,训练速度也越快) 3. 激活函数是sigmoid函数时,二次代价函数调整参数过程分析 理想调整参数状态:距离目标点远时,梯度大,参数调整较快:距离目标点近时,梯度小,参数调整较慢.如果我的目标点是调整到M点,从A点==>B点的调整…
这项工作由香港科技大学,腾讯 AI lab,以及华中科技大学合作完成,目的是提升二值化卷积神经网络(1-bit CNN)的精度.虽然 1-bit CNN 压缩程度高,但是其当前在大数据集上的分类精度与对应的实值 CNN 相比有较大的精度下降.本文提出的 Bi-Real net 用 shortcut 传递网络中已有的实数值,从而提高二值化网络的表达能力,并且改进了现有的 1-bit CNN 训练方法.试验结果表明,18 层 Bi-Real net 在 imagenet 数据集上达到 56.4%的…
一.前言 表征分类精度的指标有很多,其中最常用的就是利用混淆矩阵.总体分类精度以及Kappa系数. 其中混淆矩阵能够很清楚的看到每个地物正确分类的个数以及被错分的类别和个数.但是,混淆矩阵并不能一眼就看出类别分类精度的好坏,为此从混淆矩阵衍生出来各种分类精度指标,其中总体分类精度(OA)和卡帕系数(Kappa)应用最为广泛. 总体分类精度(OA):指被正确分类的类别像元数与总的类别个数的比值:OA值虽然能很好的表征分类精度,但是对类别像元个数极度不平衡的多类地物来说,其值收到像元数据较多类别的影…
keras-简单实现Mnist数据集分类 1.载入数据以及预处理 import numpy as np from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential from keras.layers import * from keras.optimizers import SGD import os import tensorflow as tf #…
keras-基于CNN网络的Mnist数据集分类 1.数据的载入和预处理 import numpy as np from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential from keras.layers import * from keras.optimizers import SGD,Adam from keras.regularizers imp…
近年来,随着深度学习的崛起,计算机视觉得到飞速发展.目标检测作为计算机视觉的基础算法,也搭上了深度学习的快车.基于Proposal的检测框架,从R-CNN到Faster R-CNN,算法性能越来越高,速度越来越快.另一方面,直接回归Bounding Box的框架,从YOLO到SSD,在保持速度优势的同时,性能也逐渐得到提升.“深度学习大讲堂”往期介绍过这方面的进展,在此不再赘述.    近期,我们在PASCAL VOC2012目标检测上提交的结果mAP性能达到87.9,刷新了世界记录,排名第一名…
Microsoft 设计准则 Windows 在现代设计方面遥遥领先.它采用了“真实数字”原则并从瑞士风格和交通枢纽的寻路系统中汲取灵感. 阅读详细信息 设计元素 动态磁贴 动态磁贴向你提供了一个独特工具,它可以通过以下内容提升应用的吸引力:直接发送到“开始”屏幕的更新. 初始屏幕 这是用户首先看到的内容.初始屏幕是一个临时的沉浸式品牌元素,用于开始应用体验. 语义式缩放 语义式缩放比光学缩放的功能更强大.它使你能够快速平移内容.在不同部分中跳转并重新排序导航. 语音 考虑以下两点非常重要:你的…
  import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据集 mnist = input_data.read_data_sets("/data/stu05/mnist_data",one_hot=True)     Extracting /data/stu05/mnist_data/train-images-idx3-ubyte.gz Extracting /dat…
今天分享同样数据集的CNN处理方式,同时加上tensorboard,可以看到清晰的结构图,迭代1000次acc收敛到0.992 先放代码,注释比较详细,变量名字看单词就能知道啥意思 import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data   mnist = input_data.read_data_sets("MNIST_data/", one_hot=Tru…