ml-模型评估与选择】的更多相关文章

1.损失函数和风险函数 (1)损失函数:常见的有 0-1损失函数  绝对损失函数  平方损失函数  对数损失函数 (2)风险函数:损失函数的期望      经验风险:模型在数据集T上的平均损失 根据大数定律,当N趋向于∞时,经验风险趋向于风险函数 2.模型评估方法 (1)训练误差与测试误差 训练误差:关于训练集的平均损失 测试误差:定义模型关于测试集的平均损失.其反映了学习方法对未知测试数据集的预测能力 (2)泛化误差:学到的模型对未知数据的预测能力.其越小,该模型越有效.泛化误差定义为所学习模…
目录 一.经验误差与过拟合 二.评估方法 模型评估方法 1. 留出法(hold-out) 2. 交叉验证法(cross validation) 3. 自助法(bootstrapping) 调参(parameter tuning)和最终模型 数据集(data set) 三.性能度量(performance measure) 1. 回归任务的性能度量 1.1 均方误差.均方根误差 1.2 平方绝对误差 1.3 确定系数\(R^2\) 2. 分类任务的性能度量 2.1 错误率.精度 2.2 查准率.查…
机器学习算法 原理.实现与实践——模型评估与模型选择 1. 训练误差与测试误差 机器学习的目的是使学习到的模型不仅对已知数据而且对未知数据都能有很好的预测能力. 假设学习到的模型是$Y = \hat{f}(X)$,训练误差是模型$Y = \hat{f}(X)$关于训练数据集的平均损失: $$R_{emp}(\hat{f}) = \frac{1}{N}\sum_{i=1}^NL(y_i,\hat{f}(x_i))$$ 其中$N$是训练样本容量. 测试误差是模型$Y = \hat{f}(X)$关于测…
6. 学习模型的评估与选择 Content 6. 学习模型的评估与选择 6.1 如何调试学习算法 6.2 评估假设函数(Evaluating a hypothesis) 6.3 模型选择与训练/验证/测试集(Model selection and training/validation/test sets) 6.4 偏差与方差 6.4.1 Diagnosing bias vs. variance. 6.4.2 正则化与偏差/方差(Regularization and bias/variance)…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 本笔记源于CDA-DSC课程,由常国珍老师主讲.该训练营第一期为风控主题,培训内容十分紧凑,非常好,推荐:CDA数据科学家训练营 ------------------------------------------ 一.风控建模流程以及分类模型建设 1.建模流程 该图源自课程讲义.主要将建模过程分为了五类.数据准备.变量粗筛.变量清洗.变量细筛…
http://blog.csdn.net/pipisorry/article/details/52250760 模型评估Model evaluation: quantifying the quality of predictions 3 different approaches to evaluate the quality of predictions of a model: Estimator score method: Estimators have a score method prov…
1.介绍 有三种不同的方法来评估一个模型的预测质量: estimator的score方法:sklearn中的estimator都具有一个score方法,它提供了一个缺省的评估法则来解决问题. Scoring参数:使用cross-validation的模型评估工具,依赖于内部的scoring策略.见下. Metric函数:metrics模块实现了一些函数,用来评估预测误差.见下. 2. scoring参数 模型选择和评估工具,例如: grid_search.GridSearchCV 和 cross…
本文内容和代码是接着上篇文章来写的,推荐先看一下哈~ 我们上一篇文章是写了电影推荐的实现,但是推荐内容是否合理呢,这就需要我们对模型进行评估 针对推荐模型,这里根据 均方差 和 K值平均准确率 来对模型进行评估,MLlib也对这几种评估方法都有提供内置的函数 在真实情况下,是要不断地对推荐模型的三个关键参数 rank.iterations.lambda 分别选取不同的值,然后对不同参数生成的模型进行评估,从而选取出最好的模型. 下面就对两种推荐模型评估的方法进行说明~ 1.均方差(MSE) 和…
1.评价指标的局限性 问题1 准确性的局限性 准确率是分类问题中最简单也是最直观的评价指标,但存在明显的缺陷.比如,当负样本占99%时,分类器把所有样本都预测为负样本也可以获得99%的准确率.所以,当不同类别的样本比例非常不均衡时,占比大的类别往往成为影响准确率的最主要因素. 例子:Hulu的奢侈品广告主希望把广告定向投放给奢侈品用户.Hulu通过第三方的数据管理平台拿到了一部分奢侈品用户的数据,并以此为训练集和测试集,训练和测试奢侈品用户的分类模型,该模型的分类准确率超过了95%,但在实际广告…
在sklearn当中,可以在三个地方进行模型的评估 1:各个模型的均有提供的score方法来进行评估. 这种方法对于每一种学习器来说都是根据学习器本身的特点定制的,不可改变,这种方法比较简单.这种方法受模型的影响, 2:用交叉验证cross_val_score,或者参数调试GridSearchCV,它们都依赖scoring参数传入一个性能度量函数.这种方法就是我们下面讨论的使用scoring进行模型的性能评估. 3:Metric方法,Metric有为各种问题提供的评估方法.这些问题包括分类.聚类…