给定一个有向图 G = (V, E) ,对于任意一对顶点 u 和 v,有 u --> v 和 v --> u,亦即,顶点 u 和 v 是互相可达的,则说明该图 G 是强连通的(Strongly Connected).如下图中,任意两个顶点都是互相可达的. 对于无向图,判断图是否是强连通的,可以直接使用深度优先搜索(DFS)或广度优先搜索(BFS),从任意一个顶点出发,如果遍历的结果包含所有的顶点,则说明图是强连通的. 而对于有向图,则不能使用 DFS 或 BFS 进行直接遍历来判断.如下图中,…
概念 流图 给定一个有向图G= (V,E),若存在r∈V满足,满足从r出发能够到达V中所有的点,则称G是一个流图,记为(G,r),其中r是流图的源点. 流图的搜索树 在一个流图(G,r)上从r出发,进行深度优先遍历(DFS),每个点只访问一次.所有发生递归的变(u,v)(换言之,从x到y是对y的第一次访问)构成的一颗以r为根的树我们把它称为流图(G,r)的搜索树. 时间戳 同时,我们在深度优先遍历的过程中按照每个节点第一次被访问的时间顺序,依次给予流图中每个点1~n的标记,该点的标记被称作时间戳…
首先定义:强联通分量是有向图G=(V, E)的最大结点集合,满足该集合中的任意一对结点v和u,路径vu和uv同时存在. kosaraju算法用来寻找强联通分量.对于图G,它首先随便找个结点dfs,求出每个节点最后一次访问的时间戳f(x),然后我们建立反图Gt,接着根据倒序的结束时间戳来dfs每个节点,每次dfs到的结点集合就是一个强联通分量.事实上这个算法的思想和拓扑排序类似. 我们来证明它(注意这里面的图指原图,而不是反图): 引理:对于G中的两个强联通分量C和C’,若点u属于C,点v属于C'…
图算法第三篇 图解:有向环.拓扑排序与Kosaraju算法 首先来看一下今天的内容大纲,内容非常多,主要是对算法思路与来源的讲解,图文并茂,希望对你有帮助~ 1.有向图的概念和表示 概念 有向图与上一篇文章中的无向图相对,边是有方向的,每条边所连接的两个顶点都是一个有序对,它们的邻接性都是单向的. 一幅有方向的图(或有向图)是由一组顶点和一组有方向的边组成的,每条有方向的边都连接着一对有序的顶点. 其实在有向图的定义这里,我们没有很多要说明的,因为大家会觉得这种定义都是很自然的,但是我们要始终记…
课本源码部分 第7章  图 - 有向图强连通分量的Kosaraju算法 ——<数据结构>-严蔚敏.吴伟民版        源码使用说明  链接☛☛☛ <数据结构-C语言版>(严蔚敏,吴伟民版)课本源码+习题集解析使用说明        课本源码合辑  链接☛☛☛ <数据结构>课本源码合辑        习题集全解析  链接☛☛☛ <数据结构题集>习题解析合辑        本源码引入的文件  链接☛ OLGraph.c       文档中源码及测试数据存放目…
点击打开链接 有向图强联通,Kosaraju算法 缩点后分别入度和出度为0的点的个数 answer = max(a, b); scc_cnt = 1; answer = 0 #include<cstdio> #include<algorithm> #include<vector> #include<cstring> #include<stack> using namespace std; const int maxn = 20000 + 10;…
1.基础知识 所需结构:原图.反向图(若在原图中存在vi到vj有向边,在反向图中就变为vj到vi的有向边).标记数组(标记是否遍历过).一个栈(或记录顶点离开时间的数组).      算法描叙: :对原图进行深度优先遍历,记录每个顶点的离开时间. :选择具有最晚离开时间的顶点,对反向图进行深度优先遍历,并标记能够遍历到的顶点,这些顶点构成一个强连通分量. ,否则算法结束. 在dfs(bfs)中,一个结点的开始访问时间指的是遍历时首次遇到该结点的时间,而该结点的结束访问时间则指的是将其所有邻接结点…
[有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components). 下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达.{5},{6}也分别是两个强连通分量. 直接根据定义,用双向遍历取交集的方法求强连通分量,时间复杂度为O(N^2+M).更好的…
求有向图的强连通分量     Kosaraju算法可以求出有向图中的强连通分量个数,并且对分属于不同强连通分量的点进行标记. (1) 第一次对图G进行DFS遍历,并在遍历过程中,记录每一个点的退出顺序.以下图为例: G图 结点第二次被访问即为退出之时,那么我们可以得到结点的退出顺序 (2)倒转每一条边的方向,构造出一个反图G’.然后按照退出顺序的逆序对反图进行第二次DFS遍历.我们按1.4.2.3.5的逆序第二次DFS遍历: G`图   访问过程如下: 每次遍历得到的那些点即属于同一个强连通分量…
有向图的连通分量的求解思路 kosaraju算法 逛了很多博客,感觉都很难懂,终于找到一篇能看懂的,摘要记录一下 原博客https://www.cnblogs.com/nullzx/p/6437926.html 关于连通分量是什么自行百度,这里主要说明连通分量的求解方法 基本思路:第一次DFS得出顶点的顺序,根据顶点顺序进行第二次DFS,也就是逆后序遍历(手动模拟一下堆栈就知道第二次DFS的过程就能得出答案). 为什么要两次DFS? 如果从连通分量A中任意一个定点DFS,得不到正确结果.应该按照…