矩阵——特征向量(Eigenvector)】的更多相关文章

原文链接 矩阵的基础内容以前已经提到,今天我们来看看矩阵的重要特性——特征向量. 矩阵是个非常抽象的数学概念,很多人到了这里往往望而生畏.比如矩阵的乘法为什么有这样奇怪的定义?实际上是由工程实际需要定义过来的.如果只知道概念不懂有何用处,思维就只有抽象性而没有直观性,实在是无法感受矩阵的精妙. 直观性说明 我们先看点直观性的内容.矩阵的特征方程式是: A * x = lamda * x 这个方程可以看出什么?上次我们提到矩阵实际可以看作一个变换,方程左边就是把向量x变到另一个位置而已:右边就是把…
I. 行列式(Determinants)和迹(Trace) 1. 行列式(Determinants) 为避免和绝对值符号混淆,本文一般使用\(det(A)\)来表示矩阵\(A\)的行列式.另外这里的\(A∈R^{n×n}\)默认是方阵,因为只有方阵才能计算行列式. 行列式如何计算的就不在这里赘述了,下面简要给出行列式的各种性质和定理. 定理1:当且仅当一个方阵的行列式不为0,则该方阵可逆. 定理2:方阵\(A\)的行列式可沿着某一行或某一列的元素展开,形式如下: 沿着第\(i\)行展开:\[de…
PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象,真心希望路过的各路朋友能从不同的角度阐述下自己对SVD实际意义的理解,比如 个性化推荐中应用了SVD,文本以及Web挖掘的时候也经常会用到SVD. 原文:We recommend a singular value decomposition 简介 SVD实际上是数学专业内容,但它现在已经渗入到不同的领…
降维技术, 首先举的例子觉得很好,因为不知不觉中天天都在做着降维的工作 对于显示器显示一个图片是通过像素点0,1,比如对于分辨率1024×768的显示器,就需要1024×768个像素点的0,1来表示,这里每个像素点都是一维,即是个1024×768维的数据.而其实眼睛真正看到的只是一副二维的图片,这里眼睛其实在不知不觉中做了降维的工作,把1024×768维的数据降到2维 降维的好处,显而易见,数据更易于显示和使用,去噪音,减少计算量,更容易理解数据 主流的降维技术,包含: 主成分分析,princi…
网易公开课,第14, 15课 notes,10 之前谈到的factor analysis,用EM算法找到潜在的因子变量,以达到降维的目的 这里介绍的是另外一种降维的方法,Principal Components Analysis (PCA), 比Factor Analysis更为直接,计算也简单些 参考,A Tutorial on Principal Component Analysis, Jonathon Shlens   主成分分析基于, 在现实中,对于高维的数据,其中有很多维都是扰动噪音,…
本文转载自他人: PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象,真心希望路过的各路朋友能从不同的角度阐述下自己对SVD实际意义的理解,比如 个性化推荐中应用了SVD,文本以及Web挖掘的时候也经常会用到SVD. 原文:We recommend a singular value decomposition 简介 SVD实际上是数学专业内容,但它现在…
A tutorial on Principal Components Analysis 原著:Lindsay I Smith, A tutorial on Principal Components Analysis, February 26, 2002. 翻译:houchaoqun.时间:2017/01/18.出处:http://blog.csdn.net/houchaoqun_xmu  |  http://blog.csdn.net/Houchaoqun_XMU/article/details…
目录 一.引言 1.什么是.为什么需要深度学习 2.简单的机器学习算法对数据表示的依赖 3.深度学习的历史趋势 最早的人工神经网络:旨在模拟生物学习的计算模型 神经网络第二次浪潮:联结主义connectionism 神经网络的突破 二.线性代数 1. 标量.向量.矩阵和张量的一般表示方法 2. 矩阵和向量的特殊运算 3. 线性相关和生成子空间 I. 方程的解问题 II. 思路 III. 结论 IV.求解方式 4. 范数norm I. 定义和要求 II. 常用的\(L^2\)范数和平方\(L^2\…
对同一个体进行多项观察时,必定涉及多个随机变量X1,X2,…,Xp,它们都是的相关性, 一时难以综合.这时就需要借助主成分分析 (principal component analysis)来概括诸多信息的主要方面.我们希望有一个或几个较好的综合指标来概括信息,而且希望综合指标互相独立地各代表某一方面的性质. 任何一个度量指标的好坏除了可靠.真实之外,还必须能充分反映个体间的变异.如果有一项指标,不同个体的取值都大同小异,那么该指标不能用来区分不同的个体.由这一点来看,一项指标在个体间的变异越大越…
预处理:主成分分析与白化 Preprocessing:PCA and Whitening 一主成分分析 PCA 1.1 基本术语 主成分分析 Principal Components Analysis 白化 whitening 亮度 intensity 平均值 mean 方差 variance 协方差矩阵 covariance matrix 基 basis 幅值 magnitude 平稳性 stationarity 特征向量 eigenvector 特征值 eigenvalue 1.2 介绍 主…