loj2174 「FJOI2016」神秘数】的更多相关文章

先考虑一下一个集合怎么用 \(O(n)\) 时间求出来,然后用主席树推广到一个序列就可以了.大致思想就是考虑一个数的权值和它前面的数的和的关系. #include <algorithm> #include <iostream> #include <cstdio> using namespace std; int n, a[100005], cnt, b[100005], m, uu, vv, rot[100005], tot; struct Node{ int l, r…
「FJOI2016」神秘数 这题不sb,我挺sb的... 我连不带区间的都不会哇 考虑给你一个整数集,如何求这个神秘数 这有点像一个01背包,复杂度和值域有关.但是你发现01背包可以求出更多的东西,就是每个值是否可以被表示,而这个问题有点像问你一个单点的是否可以被表示,这是它的特殊性. 我们把这个整数集排序后,假设当前表示的区间是\([1,x]\),这时候在线加入\(a\) 如果\(a\le x\),显然值域变成\([1,x+a]\),否则答案假设\(x+1\) 考虑如何优化这个过程,我们可不可…
目录 @description@ @solution@ @accepted code@ @details@ @description@ 一个可重复数字集合 S 的神秘数定义为最小的不能被 S 的子集的和表示的正整数.例如: S = {1,1,1,4,13} 1 = 1 2 = 1+1 3 = 1+1+1 4 = 4 5 = 4+1 6 = 4+1+1 7 = 4+1+1+1 8 无法表示为集合 S 的子集的和,故集合 S 的神秘数为 8. 现给定 n 个正整数 a1 ... an, m 个询问,…
题解 这道题的结论很显然= = 就是暴力求的话,把一个区间的数排一下序,如果当前这个数大于前面所有数的前缀和+1,那么前缀和+1即我们所求的答案 那么我们设置一个当前答案(初始为1),在主席树上求出来小于这个答案的数的和是多少,设为t,如果t < ans,那么答案就是ans,如果t >= ans,那么设置ans = t + 1 容易发现,在两次操作之后ans必然翻倍,所以复杂度是\(O(M \log N \log \sum a_{i})\) 代码 #include <bits/stdc+…
5255 -- [FJOI2016]神秘数 Description 一个可重复数字集合\(S\) 的神秘数定义为最小的不能被 \(S\) 的子集的和表示的正整数.例如: \(S = {1,1,1,4,13}\) \(1 = 1\) \(2 = 1+1\) \(3 = 1+1+1\) \(4 = 4\) \(5 = 4+1\) \(6 = 4+1+1\) \(7 = 4+1+1+1\) \(8\) 无法表示为集合S 的子集的和,故集合$ S$ 的神秘数为 \(8\).​ 现给定 \(n\) 个正整…
Portal Description 给出\(n,k,L,R(\leq10^9)\),求从\([L,R]\)中选出\(n\)个可相同有顺序的数使得其gcd为\(k\)的方案数. Solution 记\(f(x)\)表示gcd为\(x\)时的方案数,那么我们要求的就是\(f(k)\).设\(F(x)=\sum_{x|d}f(d)\)表示gcd为\(x\)的倍数时的方案数,即\(F(x)=(⌊\dfrac{R}{x}⌋-⌊\dfrac{L-1}{x}⌋)^n\).于是我们得到 \[\begin{al…
「CQOI2015」选数 题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究.然而他很快发现工作量太大了,于是向你寻求帮助.你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个.由于方案数较大,你只需要输出其除以1000000007的余数即可. 输入输出格式 输入格式: 输入一行,包含4个空格分开的正整数,…
LOJ#3094. 「BJOI2019」删数 之前做atcoder做到过这个结论结果我忘了... em,就是\([1,n]\)之间每个数\(i\),然后\([i - cnt[i] + 1,i]\)可以放一条线段,没被线段放的地方就是需要改的数的总和 之后我们线段树维护区间最小值以及个数 我们要注意如果+1后使得一个本来在\([1,N]\)的点越出了范围,那么就要把这个区间给删掉,-1同理,要加进来 值域开成\(N + 2M\)也就是\(4.5*10^{5}\)即可 #include <bits/…
「BZOJ3505」[CQOI2014] 数三角形 这道题直接求不好做,考虑容斥,首先选出3个点不考虑是否合法的方案数为$C_{(n+1)*(m+1)}^{3}$,然后减去三点一线的个数就好了.显然不能枚举端点,我们可以考虑枚举两个点的x,y差值i,j,那么中间整点的个数为(gcd(i,j)-1),这样的正方形有多个,所以(n-i+1)*(m-j+1)*(gcd(i,j)-1)*2,乘2是因为有两条对角线,但是当i=0或j=0是就不能乘2了. #include<iostream> #inclu…
4299: Codechef FRBSUM Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 550  Solved: 351[Submit][Status][Discuss] Description 数集S的ForbiddenSum定义为无法用S的某个子集(可以为空)的和表示的最小的非负整数. 例如,S={1,1,3,7},则它的子集和中包含0(S’=∅),1(S’={1}),2(S’={1,1}),3(S’={3}),4(S’={1,3}),5(…