1. cv2.equalizeHist(img)  # 表示进行直方图均衡化 参数说明:img表示输入的图片 2.cv2.createCLAHA(clipLimit=8.0, titleGridSize=(8, 8))  用于生成自适应均衡化图像 参数说明:clipLimit颜色对比度的阈值, titleGridSize进行像素均衡化的网格大小,即在多少网格下进行直方图的均衡化操作 直方图均衡化:一般可以用来提升图片的亮度, 在上面一节中,我们可以看出在150-200之间所占的频数特别的大,频数…
1. cv2.calc([img], [0], mask, [256], [0, 256])  # 用于生成图像的频数直方图 参数说明: [img]表示输入的图片, [0]表示第几个通道, mask表示掩码,通常生成一部分白色,一部分黑色的掩码图, [256]表示直方图的个数, [0, 256]表示数字的范围 图像直方图表示的是颜色的像素值,在单个或者一个范围内出现的频数,一般图像会在某一个颜色区间内呈现较高的值 一只小猫,即其(0-255)的像素点的直方图分布情况,我们可以看出其在100-20…
1. cv2.dft(img, cv2.DFT_COMPLEX_OUTPUT) 进行傅里叶变化 参数说明: img表示输入的图片, cv2.DFT_COMPLEX_OUTPUT表示进行傅里叶变化的方法 2. np.fft.fftshift(img)  将图像中的低频部分移动到图像的中心 参数说明:img表示输入的图片 3. cv2.magnitude(x, y) 将sqrt(x^2 + y^2) 计算矩阵维度的平方根 参数说明:需要进行x和y平方的数 4.np.fft.ifftshift(img…
1.H = cv2.getPerspectiveTransform(rect, transform_axes) 获得投射变化后的H矩阵 参数说明:rect表示原始的位置左上,右上,右下,左下, transform_axes表示变换后四个角的位置 2.cv2.warpPerspective(gray, H, (width, height)) 根据H获得变化后的图像 参数说明: gray表示输入的灰度图像, H表示变化矩阵,(width, height)表示变换后的图像大小3. cv2.approx…
1. sift.detectAndComputer(gray, None)  # 计算出图像的关键点和sift特征向量 参数说明:gray表示输入的图片 2.cv2.findHomography(kpA, kpB, cv2.RANSAC, reproThresh) # 计算出单应性矩阵 参数说明:kpA表示图像A关键点的坐标, kpB图像B关键点的坐标, 使用随机抽样一致性算法来进行迭代,reproThresh表示每次抽取样本的个数 3.cv2.warpPespective(imageA, H,…
1.cv2.morphologyEx(src, op, kernel) 进行各类形态学的变化 参数说明:src传入的图片,op进行变化的方式, kernel表示方框的大小 2.op =  cv2.MORPH_OPEN 进行开运算,指的是先进行腐蚀操作,再进行膨胀操作 3. op = cv2.MORPH_CLOSE 进行闭运算, 指的是先进行膨胀操作,再进行腐蚀操作 开运算:表示的是先进行腐蚀,再进行膨胀操作 闭运算:表示先进行膨胀操作,再进行腐蚀操作 代码: 第一步:使用cv2.imread载入…
1. tracker = cv2.multiTracker_create() 获得追踪的初始化结果 2.cv2.TrackerKCF_create() 获得KCF追踪器 3.cv2.resize(frame, (w, h), cv2.INTER_AEAR)  # 进行图像大小的重新变化参数说明:frame表示输入图片,(w, h) 表示变化后的长和宽, cv2.INTER_AEAR表示插值的方法 4.cv2.selectROI(‘Frame’, frame, fromCenter=False,s…
1. cv2.dnn.readNetFromCaffe(prototxt, model)  用于进行SSD网络的caffe框架的加载 参数说明:prototxt表示caffe网络的结构文本,model表示已经训练好的参数结果 2.t=delib.correlation_tracker() 使用delib生成单目标的追踪器 3.delib.rectangle(int(box[0]), int(box[1]), int(box[2]), int(box[3])) 用于生成追踪器所需要的矩形框[(st…
1.cv2.goodFeaturesToTrack(old_gray, mask=None, **feature_params)  用于获得光流估计所需要的角点参数说明:old_gray表示输入图片,mask表示掩模,feature_params:maxCorners=100角点的最大个数,qualityLevel=0.3角点品质,minDistance=7即在这个范围内只存在一个品质最好的角点2. pl, st, err = cv2.calcOpticalFlowPyrLK(old_gray,…
7. cv2.putText(img, text, loc, text_font, font_scale, color, linestick) # 参数说明:img表示输入图片,text表示需要填写的文本str格式,loc表示文本在图中的位置,font_size可以使用cv2.FONT_HERSHEY_SIMPLEX, font_scale表示文本的规格,color表示文本颜色,linestick表示线条大小 信用卡数字识别: 信用卡      数字模板涉及到的内容:主要是采用模板匹配的思想 思…
1. cv2.cvtcolor(img, cv2.COLOR_BGR2GRAY) # 将彩色图转换为灰度图 参数说明: img表示输入的图片, cv2.COLOR_BGR2GRAY表示颜色的变换形式 2. cv2.findContours(img,mode, method)  # 找出图中的轮廓值,得到的轮廓值都是嵌套格式的 参数说明:img表示输入的图片,mode表示轮廓检索模式,通常都使用RETR_TREE找出所有的轮廓值,method表示轮廓逼近方法,使用NONE表示所有轮廓都显示 3.…
1.cv2.add(dog_img, cat_img)  # 进行图片的加和 参数说明: cv2.add将两个图片进行加和,大于255的使用255计数 2.cv2.resize(img, (500, 414))  # 根绝给定的维度进行变化   cv2.resize(img, (0, 0), fx=3, fy=1)  使得图像x轴变化为原来的三倍,y轴不变 参数说明:img表示需要变化的图片, (500, 414)表示变化的维度,长为414, 宽为500, fx=3, fy=1, 表示对图像的x…
1. cv2.VideoCapture('test.avi') 进行视频读取 参数说明:‘test.avi’ 输入视频的地址2. cv2.getStructureElement(cv2.MORPH_ELLIPSE, (3, 3))  # 构造一个全是1的kernel用于形态学的操作 参数说明:cv2.MORPH_ELLIPSE 生成全是1的kernel,(3, 3)表示size 3.cv2.createBackgroundSubtractorMOG2().apply(image) 对图像进行混合…
1.op = cv2.TOPHAT  礼帽:原始图片-开运算后的图片 2. op=cv2.BLACKHAT 黑帽: 闭运算后的图片-原始图片 礼帽:表示的是原始图像-开运算(先腐蚀再膨胀)以后的图像 黑帽:表示的是闭运算(先膨胀再腐蚀)后的图像 - 原始图像 代码: 第一步:读取图片 第二步:使用cv2.MOPRH_TOPHAT获得礼帽图片 第三步:使用cv2.MOPRH_BLACKHAT获得黑帽图片 import cv2 import numpy as np # 第一步读入当前图片 img =…
1. sift = cv2.xfeatures2d.SIFT_create() 实例化 参数说明:sift为实例化的sift函数 2. kp = sift.detect(gray, None)  找出图像中的关键点 参数说明: kp表示生成的关键点,gray表示输入的灰度图, 3. ret = cv2.drawKeypoints(gray, kp, img) 在图中画出关键点 参数说明:gray表示输入图片, kp表示关键点,img表示输出的图片 4.kp, dst = sift.compute…
要进一步改进MNIST学习算法,需要对卷积神经网络进行学习和了解 学习材料参见https://www.cnblogs.com/skyfsm/p/6790245.html 卷积神经网络依旧是层级网络,只是层的功能和形式做了变化,可以说是传统网络的一个改进,多了许多神经网络没有的层次. • 数据输入层/ Input layer • 卷积计算层/ CONV layer • ReLU激励层 / ReLU layer • 池化层 / Pooling layer • 全连接层 / FC layer 1.数据…
我们眼中的世界就像皮影戏的大幕布,幕布的后面有无数的齿轮,大齿轮带动小齿轮,小齿轮再带动更小的. 在最外面的小齿轮上有一个小人——那就是我们自己. 我们只看到这个小人毫无规律的在幕布前表演,却无法预测他下一步会去哪. 而幕布后面的齿轮却永远一直那样不停的旋转,永不停歇. ——这就是对傅里叶世界观的描述. 你眼中看似落叶纷飞变化无常的世界,实际只是躺在上帝怀中一份早已谱好的乐章. 下面进入正式环节↓↓↓↓↓↓ 傅里叶公式: 其中: 这就是鼎鼎大名的傅里叶公式! 简单的理解: 每一个信号,在某个特定…
1.cv2.cornerHarris(gray, 2, 3, 0.04)  # 找出图像中的角点 参数说明:gray表示输入的灰度图,2表示进行角点移动的卷积框,3表示后续进行梯度计算的sobel算子的大小,0.04表示角点响应R值的α值 角点检测:主要是检测一些边角突出来的点,对于A和B这样的面上的点而言,一个卷积框在上面移动,框中的基本像素点不发生变化, 对于像C和D边界点,只有x或者y轴方向上的平移,像素框内的像素会发生偏移,而对于E和F这样的角点而言,不管是像x轴或者向y轴平移,像素框内…
原文链接   https://www.cnblogs.com/hoojjack/p/9967298.html 计算短时傅里叶变换(STFT) scipy.signal.stft(x,fs = 1.0,window ='hann',nperseg = 256,noverlap = None,nfft = None,detrend = False,return_onesided = True,boundary ='zeros',padded = True,axis = -1 ) 参数: x : ar…
# -*- coding: utf-8 -*-"""Created on Wed Oct 17 08:49:28 2018 @author: Administrator"""import tensorflow as tf"引入input_data.py,注:Python文件必须与input_data.py在同一文件夹下"from tensorflow.examples.tutorials.mnist import input_…
1.dist.eculidean(A, B) # 求出A和B点的欧式距离 参数说明:A,B表示位置信息 2.dlib.get_frontal_face_detector()表示脸部位置检测器 3.dlib.shape_predictor(args['shape_predictor]) 表示脸部特征位置检测器 参数说明:args['shape_predictor'] 表示位置信息 4.Orderdict([('mouth', (23, 30))])  # 构造有序的字典参数说明:'mouth'表示…
1.dlib.get_frontal_face_detector()  # 获得人脸框位置的检测器, detector(gray, 1) gray表示灰度图, 2.dlib.shape_predictor(args['shape_predictor'])  # 获得人脸关键点检测器, predictor(gray, rect) gray表示输入图片,rect表示人脸框的位置信息 参数说明: args['shape_predoctor]  人脸检测器的权重参数地址 3.cv2.convexHull…
import numpy import os from keras import applications from keras.preprocessing.image import ImageDataGenerator from keras import optimizers from keras.models import Sequential, Model from keras.layers import Dropout, Flatten, Dense, GlobalAveragePool…
1.cv2.drawMatches(imageA, kpsA, imageB, kpsB, matches[:10], None, flags=2)  # 对两个图像关键点进行连线操作 参数说明:imageA和imageB表示图片,kpsA和kpsB表示关键点, matches表示进过cv2.BFMatcher获得的匹配的索引值,也有距离, flags表示有几个图像 书籍的SIFT特征点连接: 第一步:使用sift.detectAndComputer找出关键点和sift特征向量 第二步:构建BF…
1. cv2.matchTemplate(src, template, method)  # 用于进行模板匹配 参数说明: src目标图像, template模板,method使用什么指标做模板的匹配度指标 2. min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(ret)  # 找出矩阵中最大值和最小值,即其对应的(x, y)的位置参数说明:min_val, max_val, min_loc, max_loc 分别表示最小值,最大值,即对应的位…
1.cv2.pyrDown(src)  对图片做向下采样操作,通常也可以做模糊化处理 参数说明:src表示输入的图片 2.cv2.pyrUp(src) 对图片做向上采样操作 参数说明:src表示输入的图片 高斯金字塔:分为两种情况:一种是向下采样,一种是向上采样 下采样的原理:先与Gi进行高斯卷积即高斯滤波,再将所有偶数行和列去除,实现行和列维度缩减的目的 代码: 第一步:读入图片 第二步:使用cv2.pyrDown进行高斯金字塔的下采样 第三步:使用自己的步骤做高斯金字塔的下采样,先对图像作高…
1. cv2.Canny(src, thresh1, thresh2) 进行canny边缘检测 参数说明: src表示输入的图片, thresh1表示最小阈值,thresh2表示最大阈值,用于进一步删选边缘信息 Canny边缘检测步骤: 第一步:使用高斯滤波器进行滤波,去除噪音点 第二步:使用sobel算子,计算出每个点的梯度大小和梯度方向 第三步:使用非极大值抑制(只有最大的保留),消除边缘检测带来的杂散效应 第四步:应用双阈值,来确定真实和潜在的边缘 第五步:通过抑制弱边缘来完成最终的边缘检…
1. cv2.Scharr(src,ddepth, dx, dy), 使用Scharr算子进行计算 参数说明:src表示输入的图片,ddepth表示图片的深度,通常使用-1, 这里使用cv2.CV_64F允许结果是负值, dx表示x轴方向算子,dy表示y轴方向算子 2.cv2.laplacian(src, ddepth) 使用拉普拉斯算子进行计算 参数说明: src表示输入的图片,ddepth表示图片的深度,这里使用cv2.CV_64F允许结果是负值 scharr算子, 从图中我们可以看出sch…
1.cv2.Sobel(src, ddepth, dx, dy, ksize)  进行sobel算子计算 参数说明:src表示当前图片,ddepth表示图片深度,这里使用cv2.CV_64F使得结果可以是负值, dx表示x轴方向,dy表示y轴方向, ksize表示移动方框的大小 2.cv2.convertScalerAbs(src)  将像素点进行绝对值计算 参数说明: src表示当前图片 sobel算子:分为x轴方向和y轴方向上的,x轴方向上的算子如图中的Gx,将sober算子在图中进行平移,…
1.op = cv2.GRADIENT 用于梯度运算-膨胀图像-腐蚀后的图像 梯度运算:表示的是将膨胀以后的图像 - 腐蚀后的图像,获得了最终的边缘轮廓 代码: 第一步:读取pie图片 第二步:进行腐蚀和膨胀操作 第三步:将膨胀的图像 - 腐蚀的图像,获得相减得图像 第四步:使用cv2.morphologyEx(src, cv2.GRADIENT, kernel) 获得梯度运算的图片的操作 第五步:绘制第三步和第四步生成的图片 import cv2 import numpy as np # 第一…