文章来自:微信公众号[机器学习炼丹术].欢迎关注支持原创 也欢迎添加作者微信:cyx645016617. 参考目录: 目录 1 基本函数 1.1 Compose 1.2 RandomChoice 1.3 RandomOrder 2 PIL上的操作 2.1 中心切割CenterCrop 2.2 随机切割RandomCrop 2.3 随机比例切割 2.4 颜色震颤ColorJitter 2.5 随机旋转RandomRotation 2.6 灰度化Grayscale 2.7 size 2.8 概率随机…
[新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.时间序列等多个目标为技术学习的分群和水群唠嗑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx645016617. 参考目录: 目录 1 什么是eager模式 2 TF1.0 vs TF2.0 3 获取导数/梯度 4 获取高阶导数 之前讲解了如何构建数据集,如何创建TFREC文件,如何构建模型,如何存储模型.这一篇文章主要讲解,TF2中提出的一个eager模式,这个模式大大简化了TF的复杂程度. 1 什么是…
文章来自:微信公众号[机器学习炼丹术].一个ai专业研究生的个人学习分享公众号 文章目录: 目录 torchvision 1 torchvision.datssets 2 torchvision.models 模型比较 torchvision 官网上的介绍(翻墙):The torchvision package consists of popular datasets, model architectures, and common image transformations for compu…
文章来自微信公众号[机器学习炼丹术].有什么问题都可以咨询作者WX:cyx645016617.想交个朋友占一个好友位也是可以的~好友位快满了不过. 参考目录: 目录 1 探索性数据分析 1.1 数据集基本信息 1.2 数据集可视化 1.3 类别是否均衡 2 训练与推理 2.1 构建dataset 2.2 构建模型类 2.3 训练模型 2.4 推理预测 在这个文章中,主要是来做一下MNIST手写数字集的分类任务.这是一个基础的.经典的分类任务.建议大家一定要跟着代码做一做,源码已经上传到公众号.…
文章来自微信公众号[机器学习炼丹术]. 上一节课,讲解了MNIST图像分类的一个小实战,现在我们继续深入学习一下pytorch的一些有的没的的小知识来作为只是储备. 参考目录: @ 目录 1 pytorch数据结构 1.1 默认整数与浮点数 1.2 dtype修改变量类型 1.3 变量类型有哪些 1.4 数据类型转换 2 torch vs numpy 2.1 两者转换 2.2 两者区别 3 张量 3.1 张量修改尺寸 3.2 张量内存存储结构 3.3 存储区 3.4 头信息区 1 pytorch…
参考目录: 目录 1 EfficientNet 1.1 概述 1.2 把扩展问题用数学来描述 1.3 实验内容 1.4 compound scaling method 1.5 EfficientNet的基线模型 2 PyTorch实现 文章来自微信公众号[机器学习炼丹术].我是炼丹兄,如果有疑问或者想要和炼丹兄交流的可以加微信:cyx645016617. efficientNet的论文原文链接: https://arxiv.org/pdf/1905.11946.pdf 模型扩展Model sca…
[新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.时间序列等多个目标为技术学习的分群和水群唠嗑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx645016617. 参考目录: 目录 0 为什么学TF 1 Tensorflow的安装 2 数据集构建 2 预处理 3 构建模型 4 优化器 5 训练与预测 0 为什么学TF 之前的15节课的pytorch的学习,应该是让不少朋友对PyTorch有了一个全面而深刻的认识了吧 (如果你认真跑代码了并且认真看文章了的…
文章来自微信公众号[机器学习炼丹术].我是炼丹兄,欢迎加我微信好友交流学习:cyx645016617. @ 目录 1 背景 2 深度可分离卷积 2.2 一般卷积计算量 2.2 深度可分离卷积计算量 2.3 网络结构 3 PyTorch实现 本来计划是想在今天讲EfficientNet PyTorch的,但是发现EfficientNet是依赖于SENet和MobileNet两个网络结构,所以本着本系列是给"小白"初学者学习的,所以这一课先讲解MobileNet,然后下一课讲解SENet,…
[机器学习炼丹术]的炼丹总群已经快满了,要加入的快联系炼丹兄WX:cyx645016617 参考目录: 目录 1 创建自定义网络层 2 创建一个完整的CNN 2.1 keras.Model vs keras.layers.Layer 之前讲过了如何用tensorflow构建数据集,然后这一节课讲解如何用Tensorflow2.0来创建模型. TF2.0中创建模型的API基本上都放到了它的Keras中了,Keras可以理解为TF的高级API,里面封装了很多的常见网络层.常见损失函数等. 后续会详细…
[新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.时间序列等多个目标为技术学习的分群和水群唠嗑答疑解惑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx645016617. 参考目录: 目录 1 Keras卷积层 1.1 Conv2D 1.2 SeparableConv2D 1.3 Conv2DTranspose 1.3.1 去卷积的例子1 1.3.2 去卷积的例子2 2 Keras参数初始化 2.1 正态分布 2.2 均匀分布 2.3 截尾正态分布 2.…