1 简介 本文着眼于对Weisfeiler-Lehman算法(WL Test)和WL-GNN模型的分析,针对于WL测试以及WL-GNN所不能解决的环形跳跃连接图(circulant skip link graph)进行研究,并提出了一种基于相对池化的方法,有助于GNN学习到结点之间的相对关系,该方法可以较好地融入到较为通用的神经网络模型中(如CNN.RNN等),使得WL-GNN具有更强大的表征能力. 2 准备知识 2.1 WL Test及其问题 Weisfeiler-Lehman如下所示: 对于…
论文信息 论文标题:Deep Attention-guided Graph Clustering with Dual Self-supervision论文作者:Zhihao Peng, Hui Liu, Yuheng Jia, Junhui Hou论文来源:2022, arXiv论文地址:download论文代码:download 1 Introduction 当前考虑拓扑结构信息和语义信息的深度聚类方法存在的问题: 将 DAE 和 GCN 提取到的特征重要性同等看待: 忽略了不同层次的多尺度信…
论文信息 Title:<Symmetric Graph Convolutional Autoencoder for Unsupervised Graph Representation Learning> Authors:Jiwoong Park.Minsik Lee.H. Chang.Kyuewang Lee.J. Choi Sources:2019 IEEE/CVF International Conference on Computer Vision (ICCV) Paper:Downlo…
论文信息 论文标题:Accurate Learning of Graph Representations with Graph Multiset Pooling论文作者:Jinheon Baek, Minki Kang, Sung Ju Hwang论文来源:2021, ICLR论文地址:download 论文代码:download 1 Introduction 图池化存在的问题:获得的图表示需进一步使用池化函数将一组节点表示映射为紧凑的形式.对所有节点表示的简单求和或平均都平等地考虑所有节点特征…
论文题目:<GraRep: Learning Graph Representations with Global Structural Information>发表时间:  CIKM论文作者:  Shaosheng Cao; Wei Lu;  Qiongkai Xu论文地址:  DownloadGithub:      Go Abstract 在本文中,我们提出了一种新的学习加权图顶点表示的GraRep模型.该模型学习低维向量来表示出现在图中的顶点,与现有的工作不同,它将图的全局结构信息集成到…
论文信息 论文标题:Learning Graph Augmentations to Learn Graph Representations论文作者:Kaveh Hassani, Amir Hosein Khasahmadi论文来源:2022, arXiv论文地址:download论文代码:download 1 Introduction 我们引入了 LG2AR,学习图增强来学习图表示,这是一个端到端自动图增强框架,帮助编码器学习节点和图级别上的泛化表示.LG2AR由一个学习增强参数上的分布的概率策…
1 简介 随着图卷积神经网络在近年来的不断发展,其对于图结构数据的建模能力愈发强大.然而现阶段的工作大多针对简单无向图或者异质图的表示学习,对图中边存在方向和类型的特殊图----多关系图(Multi-relational Graph)的建模工作较少,且大多存在着两个问题: (1)整体网络模型的过参数化, (2)仅针对于结点的表示学习. 针对这两个问题,本论文提出了一种基于组合的图卷积神经网络来同时建模结点和边的表示,为了降低大量的边类型带来的参数量,作者采用了向量分解的方式,所有的边类型表示通过…
论文信息 论文标题:Shift-Robust GNNs: Overcoming the Limitations of Localized Graph Training Data论文作者:Qi Zhu, Natalia Ponomareva, Jiawei Han, Bryan Perozzi论文来源:2021, NeurIPS论文地址:download 论文代码:download 1 Introduction 半监督学习通过使用数据之间的关系(即边连接关系,会产生归纳偏差),以及一组带标签的样本…
论文信息 论文标题:Structural and Semantic Contrastive Learning for Self-supervised Node Representation Learning论文作者: Kaize Ding .Yancheng Wang .Yingzhen Yang.…
论文信息 论文标题:Multi-view Contrastive Graph Clustering论文作者:Erlin Pan.Zhao Kang论文来源:2021, NeurIPS论文地址:download论文代码:download 1 介绍 本文贡献: 使用Graph Filter 过滤了高阶噪声数据: 提出 Graph Contrastive Regularizer 改善了视图的质量: 2 方法 2.1 定义 将多视图图数据定义为 $G=\left\{\mathcal{V}, E_{1},…