Bellman—Ford算法思想】的更多相关文章

---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G运行Bellman—Ford算法的结果是一个布尔值,表明图中是否存在着一个从源点s可达的负权回路.若存在负权回路,单源点最短路径问题无解:若不存在这样的回路,算法将给出从源点s到图G的任意顶点v的最短路径值d[v] Bellman—Ford算法流程 分为三个阶段:       (1)初始化:将除源点…
Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力不从心了,而Bellman - Ford算法可以解决这种问题. Bellman - Ford 算法可以处理路径权值为负数时的单源最短路径问题.设想可以从图中找到一个环路且这个环路中所有路径的权值之和为负.那么通过这个环路,环路中任意两点的最短路径就可以无穷小下去.如果不处理这个负环路,程序就会永远运…
题意:题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 poj2387 Description Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, s…
Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22123   Accepted: 7990 Description Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and pe…
题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能更新点的权值,则说明有负环的存在. #include <stdio.h> #include <string.h> #define min(a,b) (a)<(b)?(a):(b) const int N = 10005; const int INF = 0x3f3f3f3f; i…
两道Bellman Ford解最短路的范例,Bellman Ford只是一种最短路的方法,两道都可以用dijkstra, SPFA做. Bellman Ford解法是将每条边遍历一次,遍历一次所有边可以求得一点到任意一点经过一条边的最短路,遍历两次可以求得一点到任意一点经过两条边的最短路...如 此反复,当遍历m次所有边后,则可以求得一点到任意一点经过m条边后的最短路(有点类似离散数学中邻接矩阵的连通性判定) POJ1556-The Doors 初学就先看POJ2240吧 题意:求从(0,5)到…
机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理) 作者:tornadomeet 出处:http://www.cnblogs.com/tornadomeet 前言: 找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是 机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考虑该岗位,毕竟在机器智能没达到人类水平之前,机器学习可以作为一种重要手段,而随着科技的 不断发展,相信这方面的人才需求也会越…
标准KMP算法用于单一模式串的匹配,即在母串中寻求一个模式串的匹配,但是现在又存在这样的一个问题,如果同时给出多个模式串,要求找到这一系列模式串在母串存在的匹配个数,我们应该如何处理呢? 基于KMP算法,我们能够想到的一个朴素算法就是,枚举这多个模式串,然后进行多次KMP算法,这个过程中完成计数,假设这里有n个模式串,那么整个算法的复杂度大约是O(n*m),m是母串的长度,这里的时间复杂度是粗略估计,没有计算辅助数组的时间(KMP中的next数组),但是这种复杂度还是太高,没有做到KMP算法中“…
机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理) 转自http://www.cnblogs.com/tornadomeet/p/3395593.html 前言: 找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考虑该岗位,毕竟在机器智能没达到人类水平之前,机器学习可以作为一种重要手段,而随着科技的不断发展,相信这方面的人才需求也会越来越大…
JVM垃圾收集算法的具体实现有很多种,本文只是介绍实现这些垃圾收集算法的三种思想和发展过程.所有的垃圾收集算法的具体实现都是遵循这三种算法思想而实现的. 1.标记-清除算法 标记-清除(Mark-Sweep)算法是最基础的垃圾收集算法.正如其名字描述的那样,该算法分为两个阶段:"标记"和"清除".首先标记出所有可以被回收的对象,然后经过一轮垃圾回收将所有被标记的对象的内存空间释放,即清除可被回收的对象.标记-清除算法的执行过程如下图所示: 该算法的优点是逻辑简单,最…