Note -「普通生成函数 OGF」】的更多相关文章

目录 圆方树的定义 圆方树的构造 实现 细节 圆方树的运用 「BZOJ 3331」压力 「洛谷 P4320」道路相遇 「APIO 2018」「洛谷 P4630」铁人两项 「CF 487E」Tourists 「SDOI 2018」「洛谷 P4606」战略游戏 「BZOJ 4316」小C的独立集 「洛谷 P5236」「模板」静态仙人掌 「HNOI 2009」「洛谷 P4410」无归岛 圆方树的定义   圆方树是由一个无向图转化出的树形结构.转化方法为: 所有原图的点为"圆点". 对于每个点…
食用前请先了解 SPFA + Dinic/EK 求解 MCMF. Sol. 总所周知,SPFA 牺牲了.于是我们寻求一些更稳定的算法求解 MCMF. 网络流算法的时间属于玄学,暂且判定为混乱中的稳定.那么我们就只能考虑在最短路算法上寻求优化.于是就想到了 Dijkstra. 但 Dijkstra 有一个致命的弱点:无法处理负权边.而我们应用的场景显然含有负权. 开动脑筋想一想可以想到一个"给所有边权加上巨大多权值进而规避负权边"的方法. 但这样在实现中,还需要记录一条最短路目前经过了哪…
前置芝士 树连剖分及其思想,以及优化时间复杂度的原理. 讲个笑话这个东西其实和 Dsu(并查集)没什么关系. 算法本身 Dsu On Tree,一下简称 DOT,常用于解决子树间的信息合并问题. 其实本质上可以理解为高维树上 DP 的空间优化,也可以理解为暴力优化. 在这里我们再次明确一些定义: 重儿子 & 轻儿子:一个节点的儿子中子树最大的儿子称为该节点的重儿子,其余的儿子即为轻儿子.特殊的,如果子树最大的有多个,我们任取一个作为重儿子. 重边 & 轻边:连接一个节点与它的重儿子的边称为…
  大概--会很简洁吧 qwq. 矩阵树定理   对于无自环无向图 \(G=(V,E)\),令其度数矩阵 \(D\),邻接矩阵 \(A\),令该图的 \(\text{Kirchhoff}\) 矩阵 \(K=D-A\).取其任意一个 \(n-1\) 阶主子式 \(K'\),则 \(G\) 的生成树个数 \(s=\det K'\).   证明先咕掉 qwq. 一些推广   对于有向图以 \(r\) 为根的内向生成树,取 \(D\) 为初度矩阵,取主子式时删去 \(r\) 行 \(r\) 列,再求行列…
学到一个诡异东西,当个 Trick 处理用吧. 现在有一个形如 \(\sum \limits _{i = 1} ^{n} \sum \limits _{d | i} f(d)\) 的柿子,不难发现可以 \(O (n \sqrt n)\) 的算出来. 但是这个时间复杂度还不够优秀(什 考虑记 \(s(i) = \sum \limits _{d|i} f(d)\).如果 \(f(x)\) 能对 \(f(y)\) 产生贡献,当且仅当 \(x\) 的所有质因数次数都低于或等于 \(y\) 的对应质因数次…
  进阶篇戳这里. 目录 何为「多项式」 基本概念 系数表示法 & 点值表示法 傅里叶(Fourier)变换 概述 前置知识 - 复数 单位根 快速傅里叶正变换(FFT) 快速傅里叶逆变换(IFFT) 迭代实现 例题 「洛谷 P3803」「模板」多项式乘法(FFT) 题意简述 数据规模 快速数论变换(NTT) 原根 实现 NTT 模数 奇怪的模数 - 任意模数 NTT 三模 NTT 拆系数 FFT(MTT) 七次转五次 五次转四次 例题 「洛谷 P4245」「模板」任意模数 NTT 题意简述 数…
目录 问题引入 思考 Lagrange 插值法 插值过程 代码实现 实际应用 「洛谷 P4781」「模板」拉格朗日插值 「洛谷 P4463」calc 题意简述 数据规模 Solution Step 1 Step 2 证明 代码 「CF 995F」Cowmpany Cowmpensation 题意简述 数据规模 Solution Step 1 Step 2 证明 代码 「CF 662F」The Sum of the k-th Powers 题意简述 数据规模 Solution 代码 「BZOJ 3…
目录 「CF 750E」New Year and Old Subsequence 「洛谷 P4719」「模板」"动态 DP" & 动态树分治 「洛谷 P6021」洪水 「SP 6779」GSS7 「NOIP 2018」「洛谷 P5024」保卫王国 \(\mathcal{Introduction}\) \(\mathcal{Problem~1}\)   给定序列 \(\{a_n\}\),其中 \(a_i\in\mathbb Z\),求其最大子段和(不能为空).   很显然的 DP…
目录 Preface 数论函数 积性函数 Dirichlet 卷积 Dirichlet 卷积中的特殊函数 Mobius 函数 & Mobius 反演 Mobius 函数 Mobius 反演 基础应用 约数个数 欧拉函数 反演魔法 例一 例二 例三 魔法中的 tricks 线性筛 trick 筛 筛 筛 刷表 trick Conclusion   UPD:修改了 Euler 筛法代码框架.   若无特别说明,\(x,y\) 等形式变量均 \(\in\mathbb N_+\):\(p\) 为素数.…
Loj 2320.「清华集训 2017」生成树计数 题目描述 在一个 \(s\) 个点的图中,存在 \(s-n\) 条边,使图中形成了 \(n\) 个连通块,第 \(i\) 个连通块中有 \(a_i\) 个点. 现在我们需要再连接 \(n-1\) 条边,使该图变成一棵树.对一种连边方案,设原图中第 \(i\) 个连通块连出了 \(d_i\) 条边,那么这棵树 \(T\) 的价值为: \[ \mathrm{val}(T) = \left(\prod_{i=1}^{n} {d_i}^m\right)…