[机器学习详解]SMO算法剖析 转载请注明出处:http://blog.csdn.net/luoshixian099/article/details/51227754 CSDN−勿在浮沙筑高台 本文力求简化SMO的算法思想,毕竟自己理解有限,无奈还是要拿一堆公式推来推去,但是静下心看完本篇并随手推导,你会迎刃而解的.推荐参看SMO原文中的伪代码. 1.SMO概念 上一篇博客已经详细介绍了SVM原理,为了方便求解,把原始最优化问题转化成了其对偶问题,因为对偶问题是一个凸二次规划问题,这样的凸二次规…
原文:走向DBA[MSSQL篇] 详解游标 前篇回顾:上一篇虫子介绍了一些不常用的数据过滤方式,本篇详细介绍下游标. 概念 简单点说游标的作用就是存储一个结果集,并根据语法将这个结果集的数据逐条处理. 观点 正因为游标可以将结果集一条条取出处理,所以会增加服务器的负担.再者使用游标的效率远远没有使用默认的结果集效率高,在默认结果集中,从客户端发送到服务器的唯一一个数据包是包含需执行语句的数据包.而在使用服务器游标时,每一个FETCH语句都必须从客户端发送到服务器,然后在服务器中将它解析并编译为执…
PHP函数篇详解十进制.二进制.八进制和十六进制转换函数说明 作者: 字体:[增加 减小] 类型:转载   中文字符编码研究系列第一期,PHP函数篇详解十进制.二进制.八进制和十六进制互相转换函数说明,主要掌握各进制转换的方法,以应用于实际开发     一,十进制(decimal system)转换函数说明 1,十进制转二进制 decbin() 函数,如下实例 echo decbin(12); //输出 1100 echo decbin(26); //输出 11010 decbin (PHP 3…
Question? Adam 算法是什么,它为优化深度学习模型带来了哪些优势? Adam 算法的原理机制是怎么样的,它与相关的 AdaGrad 和 RMSProp 方法有什么区别. Adam 算法应该如何调参,它常用的配置参数是怎么样的. Adam 的实现优化的过程和权重更新规则 Adam 的初始化偏差修正的推导 Adam 的扩展形式:AdaMax 1.什么是Adam优化算法? Adam 是一种可以替代传统随机梯度下降过程的一阶优化算法,它能基于训练数据迭代地更新神经网络权重.Adam 最开始是…
JS中的函数节流throttle详解和优化在前端开发中,有时会为页面绑定resize事件,或者为一个页面元素绑定拖拽事件(mousemove),这种事件有一个特点,在一个正常的操作中,有可能在一个短的时间内触发非常多次事件绑定程序.DOM操作时很消耗性能的,如果你为这些事件绑定一些操作DOM节点的操作的话,那就会引发大量的计算,在用户看来,页面可能就一时间没有响应,这个页面一下子变卡了变慢了.在IE下,如果你绑定的resize事件进行较多DOM操作可能直接就崩溃了. 怎么解决?函数节流(thro…
Scala进阶之路-Scala函数篇详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.传值调用和传名调用 /* @author :yinzhengjie Blog:http://www.cnblogs.com/yinzhengjie/tag/Scala%E8%BF%9B%E9%98%B6%E4%B9%8B%E8%B7%AF/ EMAIL:y1053419035@qq.com */ package cn.org.yinzhengjie.basicGrammar objec…
MySQL配置文件my.cnf 例子最详细翻译,可以保存做笔记用. #BEGIN CONFIG INFO#DESCR: 4GB RAM, 只使用InnoDB, ACID, 少量的连接, 队列负载大#TYPE: SYSTEM#END CONFIG INFO ## 此mysql配置文件例子针对4G内存.# 主要使用INNODB#处理复杂队列并且连接数量较少的mysql服务器## 将此文件复制到/etc/my.cnf 作为全局设置,# mysql-data-dir/my.cnf 作为服务器指定设置#…
apache配置文件详解与优化 一.总结 一句话总结:结合apache配置文件中的英文说明和配置详解一起看 1.apache模块配置用的什么标签? IfModule 例如: <IfModule dir_module> DirectoryIndex index.html 索引文件 首页文件(首页文件可以有多个,可以用空格匹配多个,) </IfModule> 2.apache的目录配置用什么标签? Directory 例如: <Directory /> 根目录(以下是对根目…
1.mini-batch size 表示每次都只筛选一部分作为训练的样本,进行训练,遍历一次样本的次数为(样本数/单次样本数目) 当mini-batch size 的数量通常介于1,m 之间    当为1时,称为随机梯度下降 一般我们选择64,128, 256等样本数目 import numpy as np import math def random_mini_batch(X, Y, mini_batch = 64, seed=0): np.random.seed(seed) m = X.sh…
tomcat常用配置详解和优化方法 参考: http://blog.csdn.net/zj52hm/article/details/51980194 http://blog.csdn.net/wuliu_forever/article/details/52607177 https://www.cnblogs.com/dengyungao/p/7542604.html https://www.cnblogs.com/ysocean/p/6893446.html#_label1 常用配置详解 1 目…