又一道好题啊qwqqqq 一开始看这个题,还以为是一个树剖的什么毒瘤题目 (不过的确貌似可以用树剖啊) qwq这真是一道\(LCT\)维护颜色的好题 首先,我们来一个一个操作的考虑. 对于操作\(1\)来说,我们是不是就相当于把\(1~x\)的路径,弄成一个独立的联通块? 哎,这个貌似是\(access(x)\)的操作理念啊QWQ 假设我们用\(LCT\)维护这棵树,一开始就全是虚边,然后对于一次1操作,那么就相当于一次\(access\),那么权值的定义,也就相当于到1的路径上要经过多少个不同…
题目分析: 操作一很明显等价于LCT上的access操作,操作二是常识,操作三转化到dfs序上求最大值也是常识.access的时候顺便在线段树中把对应部分-1,把右子树的子树+1即可. 代码: #include<bits/stdc++.h> using namespace std; ; int num,n,m; vector <int> g[maxn]; int f[maxn],dep[maxn],dfsin[maxn],dfsout[maxn]; class SegmentTre…
洛谷题目传送门 闲话 这是所有LCT题目中的一个异类. 之所以认为是LCT题目,是因为本题思路的瓶颈就在于如何去维护同颜色的点的集合. 只不过做着做着,感觉后来的思路(dfn序,线段树,LCA)似乎要喧宾夺主了...(至少在代码上看是如此) 思路分析 一个一个操作来(瞎BB中,这种思路模式并不具有普遍性......) 1操作 还好我没学树剖233333以至于(直接想到)只好用LCT来维护颜色. 题目透露出的神奇的性质--每一种颜色,无论在任何时刻,肯定是一条链,而且点的深度严格递增! 而且还特意…
  2020/4/30   15:55 树链剖分是一种十分实用的树的方法,用来处理LCA等祖先问题,以及对一棵树上的节点进行批量修改.权值和查询等有奇效. So, what is 树链剖分? 可以简单的理解为,将一棵树分成许多条不相交的链,每次我们只要得知链首,便可对该条链上所有的点用数据结构(like 线段树)进行相关操作 . 首先,介绍最常用的轻重链剖分. 明确最常用的轻重链概念: 重儿子:父亲节点的所有儿子中子树结点数目最多(size最大)的结点: 轻儿子:父亲节点中除了重儿子以外的儿子:…
洛谷1087 FBI树 本题地址:http://www.luogu.org/problem/show?pid=1087 题目描述 我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全“1”串称为I串,既含“0”又含“1”的串则称为F串.FBI树是一种二叉树,它的结点类型也包括F结点,B结点和I结点三种.由一个长度为2^N的“01”串S可以构造出一棵FBI树T,递归的构造方法如下:1)      T的根结点为R,其类型与串S的类型相同:2)      若串S的长度大于1,将串S从…
洛谷P3018 [USACO11MAR]树装饰Tree Decoration树形DP 因为要求最小,我们就贪心地用每个子树中的最小cost来支付就行了 #include <bits/stdc++.h> #define For(i, j, k) for(int i=j; i<=k; i++) #define Dow(i, j, k) for(int i=j; i>=k; i--) #define LL long long using namespace std; inline int…
题意:给出一棵树,这棵树每个点有权值,然后有3种操作.操作一:修改树根为rt,操作二:修改u到v路径上点权值为w,操作三:询问以rt为根x子树的最小权值. 解法:如果没有修改树根操作那么这题就是树链剖分的裸题.但是修改树根操作会使得题目变得复杂一些,这里直接说结论:我们先直接以1为根建树进行树链剖分,这样的话根固定了那么路径修改操作就照常,然后我们要考虑换根操作对查询的影响(这是重点). 画图分析后可以发现,可以分为3种情况,①x==rt,询问的就是整棵树  ②x不在1到rt的路径上,对查询没有…
洛谷题面传送门 SDOI 2017 R2 D1 T3,nb tea %%% 讲个笑话,最近我在学动态 dp,wjz 在学 FWT,而我们刚好在同一天做到了这道题,而这道题刚好又是 FWT+动态 dp 首先考虑怎样暴力计算答案,我们记 \(dp_{u,j}\) 表示以 \(u\) 为根的子树中有多少个连通块包含 \(u\) 且权值的异或和为 \(j\),初始 \(dp_{u,val_u}=1\),每次遍历 \(u\) 的一个子树 \(v\) 就对这个子树就对这两个子树的 \(dp\) 做一个合并,…
洛谷题面传送门 咦?鸽子 tzc 竟然来补题解了?incredible( 首先看到这样类似于路径统计的问题我们可以非常自然地想到点分治.每次我们找出每个连通块的重心 \(x\) 然后以 \(x\) 为根 DFS 一遍整个子树,我们假设 \(y\) 到 \(x\) 的距离为 \(dep_y\),\(x\to y\) 这一段上颜色的权值之和为 \(sum_y\),那么考虑怎样合并两条路径.显然对于两个在 \(x\) 不同子树内的点 \(y,z\),\(y\to z\) 路径上边的个数就是 \(dep…
题意:中文题,按照题目要求的二叉树生成方式,问(1)叶平均深度 (2)树平均深度 解法:这道题看完题之后完全没头绪,无奈看题解果然不是我能想到的qwq.题解参考https://blog.csdn.net/Maxwei_wzj/article/details/82262755这位大佬的,这里讲下我的理解: 首先是第一问:第一问会简单一些,设f[i]代表叶节点为i的树的叶平均深度,那么因为是平均那么 i*f[i] 就是叶子总深度啦.在叶子深度x下拓展得到的新贡献是 2(x+1)-x=x+2  .那么…