蒙特卡罗方法给我的感觉是和Reinforcement Learning: An Introduction的第二章中Bandit问题的解法比较相似,两者皆是通过大量的实验然后估计每个状态动作的平均收益.不过两者的区别也是显而易见,Bandit问题比较简单,状态1->动作1->状态1,这个状态转移过程始终是自我更新的过程,而且是一一对应的关系.蒙特卡罗方法所解决的问题就要复杂一些,通常来说,其状态转移过程可能为,状态1->动作1->状态2->动作1->状态3.Sutten书…
“肥皂泡”问题来源于Reinforcement Learning: An Introduction(2017). Exercise 5.2,大致的描述如下: 用一个铁丝首尾相连组成闭合曲线,浸入肥皂泡液,拿起后,可以发现肥皂泡液以这个闭合曲线为边界形成了一个曲面.如何将这个曲面描述出来,便是肥皂泡问题的核心. 若想使得肥皂泡液形成一个稳固的曲面,肥皂泡上的每一个点所受到的合力均为0,所以这意味着该点所处的位置是周边所有点位置的均值(在这里忽略重力的影响,肥皂泡的密度量级与空气相当).所以在计算曲…
文章目录 [隐藏] 1. 强化学习和深度学习结合 2. Deep Q Network (DQN) 算法 3. 后续发展 3.1 Double DQN 3.2 Prioritized Replay 3.3 Dueling Network 4. 总结 强化学习系列系列文章 我们终于来到了深度强化学习. 1. 强化学习和深度学习结合 机器学习=目标+表示+优化.目标层面的工作关心应该学习到什么样的模型,强化学习应该学习到使得激励函数最大的模型.表示方面的工作关心数据表示成什么样有利于学习,深度学习是最…
强化学习读书笔记 - 09 - on-policy预测的近似方法 参照 Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016 强化学习读书笔记 - 00 - 术语和数学符号 强化学习读书笔记 - 01 - 强化学习的问题 强化学习读书笔记 - 02 - 多臂老O虎O机问题 强化学习读书笔记 - 03 - 有限马尔科夫决策过程 强化学习读书笔记 - 04 -…
强化学习读书笔记 - 13 - 策略梯度方法(Policy Gradient Methods) 学习笔记: Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016 参照 Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 20…
强化学习读书笔记 - 11 - off-policy的近似方法 学习笔记: Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016 参照 Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016 强化学习读书笔记 - 00…
强化学习读书笔记 - 10 - on-policy控制的近似方法 学习笔记: Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016 参照 Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016 强化学习读书笔记 - 0…
请先阅读上两篇文章: [RL系列]马尔可夫决策过程中状态价值函数的一般形式 [RL系列]马尔可夫决策过程与动态编程 状态价值函数,顾名思义,就是用于状态价值评价(SVE)的.典型的问题有“格子世界(GridWorld)”游戏(什么是格子世界?可以参考:Dynamic programming in Python),高尔夫游戏,这类问题的本质还是求解最优路径,共性是在学习过程中每一步都会由一个动作产生一个特定的状态,而到达该状态所获得的奖励是固定的,与如何到达,也就是之前的动作是无关的,并且这类问题…
请先阅读上一篇文章:[RL系列]马尔可夫决策过程与动态编程 在上一篇文章里,主要讨论了马尔可夫决策过程模型的来源和基本思想,并以MAB问题为例简单的介绍了动态编程的基本方法.虽然上一篇文章中的马尔可夫决策过程模型实现起来比较简单,但我认为其存在两个小问题: 数学表达上不够简洁 状态价值评价型问题与动作价值评价型问题是分离的,形式上不够统一 本篇主要来解决第一个问题. 第一个问题是比较直观的,下面给出状态价值函数以作分析: $$ \mathbb{Value}(S_1) = \mathbb{Rewa…
本篇主要是为了记录UCB策略与Gradient策略在解决Multi-Armed Bandit问题时的实现方法,涉及理论部分较少,所以请先阅读Reinforcement Learning: An Introduction (Drfit) 的2.7,2.8的内容.为了更深入一点了解UCB策略,可以随后阅读下面这篇文章: [RL系列]Multi-Armed Bandit笔记补充(二)—— UCB策略 UCB策略需要进行初始化工作,也就是说通常都会在进入训练之前先将每个动作都测试一变,保证每个动作被选择…