象群游牧算法--EHO】的更多相关文章

象群游牧算法的数学模型 象群的游牧行为非常复杂,但是其中一些行为可以帮助我们寻找全局最优解和局部最优解.对此,进行数学建模为: (1) 象群的每个部落都有固定数目的大象: (2) 每次迭代中,部落中都有一定数目的大象离开部落,独自生活并与部落保持一定的联系: (3) 每个部落都是由女族长领导-----在算法中,女族长是适应度值最大的大象. 象群游牧算法 部落中大象位置的更新公式 1)部落中普通大象的更新公式: \(p_{jc}^{t+1} = p_{jc}^{t} + \alpha*(p_{be…
1. 适应度函数: function z=chaffer(x)%chaffer函数x=(0...0) f(x)=0 x[-10,10]%%没测 n=10; s1=0; for i=1:n s1=s1+x(i)^2; end z=((sin(sqrt(s1)))^2-0.5)/(1+0.001*s1)+0.5; end 2. EHO主函数 % ---------------------------------------------------------- % Title: Elephant H…
若干年前读研的时候,学院有一个教授,专门做群蚁算法的,很厉害,偶尔了解了一点点.感觉也是生物智能的一个体现,和遗传算法.神经网络有异曲同工之妙.只不过当时没有实际需求学习,所以没去研究.最近有一个这样的任务,所以就好好把基础研究了一下,驱动式学习,目标明确,所以还是比较快去接受和理解,然后写代码实现就好了.今天就带领大家走近TSP问题以及群蚁算法. 机器学习目录:[目录]数据挖掘与机器学习相关算法文章总目录 本文原文地址:群蚁算法理论与实践全攻略——旅行商等路径优化问题的新方法 1.关于旅行商(…
同进化算法(见博客<[Evolutionary Algorithm] 进化算法简介>,进化算法是受生物进化机制启发而产生的一系列算法)和人工神经网络算法(Neural Networks,简称NN,神经网络是从信息处理角度对人脑的神经元网络系统进行了模拟的相关算法)一样,群体智能优化算法也属于一种生物启发式方法,它们三者可以称为是人工智能领域的三驾马车(PS:实际上除了上述三种算法还有一些智能算法应用也很广泛,比如模拟金属物质热力学退火过程的模拟退火算法(Simulated Algorithm,…
前言 最近由于换了工作,期间也有反思和总结上家公司的得失,总觉得有什么事情当初可以完成或者完成得更好,其中TSP问题就是其中之一.当初在开发一个仓配系统的时候,有一个线路排程的需求,当时自己简单在纸上画了思路,发现求精确解算法复杂度是N!,所以去百度,发现了NPC问题的概念,但是一直以来都没有对这个问题好好研究过,最终只是选择了贪心算法这一求近似解的方案,正好这是我的第一篇博客,就拿这个“遗憾”开刀吧. 1.  利用百度地图API模拟TSP的各个城市点 1.1. 调用百度地图API解析经纬度 这…
需求为(自己编的,非实际项目): 某配送中心进行揽货,目标客户数为50个客户,配送中心目前的运力资源如下: 现有车辆5台 单台运力最大行驶距离200千米 单台运力最大载重公斤1吨 问:运力怎样走法才能以最低的成本完成针对这50个客户的揽货行为 是个最优化问题(运筹学),我们只考虑简化后的模型,不考虑路面交通.时间窗口这些复杂计算,用蚁群优化算法来实现接近最优解的计算. 关于蚁群优化算法的理论请看这篇文章:https://www.cnblogs.com/asxinyu/p/Path_Optimiz…
[论文标题]一种多尺度协同变异的微粒群优化算法 (2010) [论文作者]陶新民,刘福荣, 刘  玉 , 童智靖 [论文链接]Paper(14-pages // Single column) [摘要] 分析了变异操作对微粒群算法(PSO)的影响,针对变异单一,收敛速度慢,易陷入局部极小点等缺点,提出一种新的多尺度协同变异的粒子群优化算法,并证明了该算法以概率 1 收敛到全局最优解.该算法采用多尺度高斯变异机制实现局部解逃逸.在算法的初期阶段,利用大尺度变异及均匀变异算子能够实现全局最优解空间的快…
算法学习自:MATLAB与机器学习教学视频 1.粒子群优化算法概述 粒子群优化(PSO, particle swarm optimization)算法是计算智能领域,除了蚁群算法,鱼群算法之外的一种群体智能的优化算法,该算法最早由Kennedy和Eberhart在1995年提出的,该算法源自对鸟类捕食问题的研究. • PSO算法首先在可行解空间中初始化一群粒子,每个粒子都代表极值优化问题的一个潜在最优解,用位置.速度和适应度值三项指标表示该粒子特征. • 粒子在解空间中运动,通过跟踪个体极值Pb…
C# 蚁群优化算法实现 需求为(自己编的,非实际项目): 某配送中心进行揽货,目标客户数为50个客户,配送中心目前的运力资源如下: 现有车辆5台 单台运力最大行驶距离200千米 单台运力最大载重公斤1吨 问:运力怎样走法才能以最低的成本完成针对这50个客户的揽货行为 是个最优化问题(运筹学),我们只考虑简化后的模型,不考虑路面交通.时间窗口这些复杂计算,用蚁群优化算法来实现接近最优解的计算. 关于蚁群优化算法的理论请看这篇文章:https://www.cnblogs.com/asxinyu/p/…
MATLAB粒子群优化算法(PSO) 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 一.介绍 粒子群优化算法(Particle Swarm Optimization Algorithm)是一种群智能算法,为了寻求全局最优.群体迭代,粒子在解空间追随最优的粒子进行搜索. 粒子群算法的思想源于对鸟群捕食行为的研究,模拟鸟集群飞行觅食的行为,鸟之间通过集体的协作使群体达到最优目的,是一种基于Swarm Intelligence的优化方法. 马良教授在他…