Introduction 在这个实验中,我们将实现操作系统的一些基本功能,来实现用户环境下的进程的正常运行.你将会加强JOS内核的功能,为它增添一些重要的数据结构,用来记录用户进程环境的一些信息:创建一个单一的用户环境,并且加载一个程序运行它.你也可以让JOS内核能够完成用户环境所作出的任何系统调用,以及处理用户环境产生的各种异常. Part A: User Environments and Exception Handling 新包含的文件inc/env.h里面包含了JOS内核的有关用户环境(…
Lab 1 Part 1: PC bootstrap 我们继续~ PC机的物理地址空间 这一节我们将深入的探究到底PC是如何启动的.首先我们看一下通常一个PC的物理地址空间是如何布局的:                           这张图仅仅展示了内存空间的一部分. 第一代PC处理器是16位字长的Intel 8088处理器,这类处理器只能访问1MB的地址空间,即0x00000000~0x000FFFFF.但是这1MB也不是用户都能利用到的,只有低640KB(0x00000000~0x00…
Lab 1 Part 2 The Boot Loader Loading the Kernel 我们现在可以进一步的讨论一下boot loader中的C语言的部分,即boot/main.c.但是在我们分析之前,我们应该先回顾一些关于C语言的基础知识. Exercise 4: 阅读关于C语言的指针部分的知识.最好的参考书自然是"The C Programming Language". 阅读5.1到5.5节.然后下载pointers.c的代码,并且编译运行它,确保你理解在屏幕上打印出来的所…
Lab 1: Booting a PC Part 1: PC Bootstrap 介绍这一部分知识的目的就是让你能够更加熟悉x86汇编语言,以及PC启动的整个过程,而且也会首次学习使用QEMU软件来仿真xv6操作系统,并且配合GDB对操作系统的运行进行调试. 开始学习X86汇编语言 由于x86汇编语言在我们这节实验中扮演了非常重要的角色,所以MIT官方为我们提供了一个关于汇编语言的参考资料"004. pcasm-book"(资料文件名,在resources目录下),里面基本介绍了汇编语…
现在你的操作系统内核已经具备一定的异常处理能力了,在这部分实验中,我们将会进一步完善它,使它能够处理不同类型的中断/异常. Handling Page Fault 缺页中断是一个非常重要的中断,因为我们在后续的实验中,非常依赖于能够处理缺页中断的能力.当缺页中断发生时,系统会把引起中断的线性地址存放到控制寄存器 CR2 中.在trap.c 中,已经提供了一个能够处理这种缺页异常的函数page_fault_handler(). Question 5: 修改一下 trap_dispatch 函数,使…
Part 3 Kernel Address Space JOS把32位线性地址虚拟空间划分成两个部分.其中用户环境(进程运行环境)通常占据低地址的那部分,叫用户地址空间.而操作系统内核总是占据高地址的部分,叫内核地址空间.这两个部分的分界线是定义在memlayout.h文件中的一个宏 ULIM.JOS为内核保留了接近256MB的虚拟地址空间.这就可以理解了,为什么在实验1中要给操作系统设计一个高地址的地址空间.如果不这样做,用户环境的地址空间就不够了. Permission and Fault…
Lab 2: Memory Management lab2中多出来的几个文件: inc/memlayout.h kern/pmap.c kern/pmap.h kern/kclock.h kern/kclock.c memlayout.h描述了虚拟地址空间的结构,我们需要通过修改pmap.c文件来实现这个结构.memlayout.h和pmap.h文件定义了一个PageInfo结构,利用这个结构可以记录有哪些物理页是空闲的.kclock.c和kclock.h文件中操作的是用电池充电的时钟,以及CM…
Lab 1 Part 3: The kernel 现在我们将开始具体讨论一下JOS内核了.就像boot loader一样,内核开始的时候也是一些汇编语句,用于设置一些东西,来保证C语言的程序能够正确的执行. 使用虚拟内存 在运行boot loader时,boot loader中的链接地址(虚拟地址)和加载地址(物理地址)是一样的.但是当进入到内核程序后,这两种地址就不再相同了. 操作系统内核程序在虚拟地址空间通常会被链接到一个非常高的虚拟地址空间处,比如0xf0100000,目的就是能够让处理器…
Part 2: The Boot Loader 对于PC来说,软盘,硬盘都可以被划分为一个个大小为512字节的区域,叫做扇区.一个扇区是一次磁盘操作的最小粒度.每一次读取或者写入操作都必须是一个或多个扇区.如果一个磁盘是可以被用来启动操作系统的,就把这个磁盘的第一个扇区叫做启动扇区.这一部分介绍的boot loader程序就位于这个启动扇区之中.当BIOS找到一个可以启动的软盘或硬盘后,它就会把这512字节的启动扇区加载到内存地址0x7c00~0x7dff这个区域内. 对于6.828,我们将采用…
0. 简介 操作系统是计算机科学中十分重要的一门基础学科,是一名计算机专业毕业生必须要具备的基础知识.但是在学习这门课时,如果仅仅把目光停留在课本上一些关于操作系统概念上的叙述,并不能对操作系统有着深层次的理解.必须要结合动手实践,才能真正掌握核心的知识. MIT的操作系统课程6.828是一门被广泛好评的入门课程.它最重要的特点就是它实践第一的教学原则.在这门课程中会涉及到非常丰富的实验,也会有非常多的动手机会.而且授课者更是亲自构建了一个简化的基于Unix内核的操作系统xv6.所有的实验都是在…
Exercise 1.8       我们丢弃了一小部分代码---即当我们在printf中指定输出"%o"格式的字符串,即八进制格式的代码.尝试去完成这部分程序. 解答: 在这个练习中我们首先要阅读以下三个源文件的代码,弄清楚他们三者之间的关系: 三个文件分别为 \kern\printf.c,\kern\console.c, \lib\printfmt.c 首先大致浏览三个源文件,其中粗略的观察到3点: 1.\kern\printf.c中的cprintf,vcprintf子程序调用了\…
Lab 1 Exercise 3 设置一个断点在地址0x7c00处,这是boot sector被加载的位置.然后让程序继续运行直到这个断点.跟踪/boot/boot.S文件的每一条指令,同时使用boot.S文件和系统为你反汇编出来的文件obj/boot/boot.asm.你也可以使用GDB的x/i指令来获取去任意一个机器指令的反汇编指令,把源文件boot.S文件和boot.asm文件以及在GDB反汇编出来的指令进行比较. 追踪到bootmain函数中,而且还要具体追踪到readsect()子函数…
这篇博文是对Lab 1中的Exercise 2的解答~ Lab 1 Exercise 2: 使用GDB的'si'命令,去追踪ROM BIOS几条指令,并且试图去猜测,它是在做什么.但是不需要把每个细节都弄清楚. 答: 在这里我们将尽可能的去分析每一条指令,由于题目中说我们只需要知道BIOS的几条指令在做什么就够了,所以我们也会尽可能的去分析,由于能力有限,这里面有很多问题还没有解决,希望大家谅解.以后有机会会尽可能的把没分析的命令去补全. 首先注意这里是紧接着Lab 1 Part 1.2那篇博文…
Lab 1中Exercise 9的解答报告 Exercise 1.9: 判断一下操作系统内核是从哪条指令开始初始化它的堆栈空间的,以及这个堆栈坐落在内存的哪个地方?内核是如何给它的堆栈保留一块内存空间的?堆栈指针又是指向这块被保留的区域的哪一端的呢? 答: 1. 首先需要判断操作系统内核是从哪条指令开始初始化它的堆栈空间的. 前面已经分析过boot.S和main.c文件的运行过程,这个文件中的代码是PC启动后,BIOS运行完成后,首先执行的两部分代码.但是它们并不属于操作系统的内核.当main.…
Lab 1 Exercise 10 为了能够更好的了解在x86上的C程序调用过程的细节,我们首先找到在obj/kern/kern.asm中test_backtrace子程序的地址, 设置断点,并且探讨一下在内核启动后,这个程序被调用时发生了什么.对于这个循环嵌套调用的程序test_backtrace,它一共压入了多少信息到堆栈之中.并且它们都代表什么含义? 答: 先找到这个子程序的地址,打开obj/kern/kern.asm.在这个文件中我们查到调用test_backtrace子程序指令的地址为…
Lab 1 Exercise 4 阅读关于C语言的指针部分的知识.最好的参考书自然是"The C Programming Language". 阅读5.1到5.5节.然后下载pointers.c的代码,并且编译运行它,确保你理解在屏幕上打印出来的所有的值是怎么来的.尤其要重点理解第1行,第6行的指针地址是如何得到的,以及在第2行到第4行的值是如何得到的,还有为什么在第5行打印出来的值看起来像程序崩溃了. 答: 首先编译运行文件pointer.c,得到如下结果: 首先程序声明了3个重要的…
Lab 1 Exercise 5 再一次追踪一下boot loader的一开始的几句指令,找到第一条满足如下条件的指令处: 当我修改了boot loader的链接地址,这个指令就会出现错误. 找到这样的指令后,把boot loader的链接地址修改一下,我们要在boot/Makefrag文件中修改它的链接地址,修改完成后运行  make clean, 然后通过make指令重新编译内核,再找到那条指令看看会发生什么. 最后别忘了改回来. 答: 这道题希望我们能够去修改boot loader的链接地…
在我们阅读boot loader代码时,遇到了两个非常重要的概念,实模式(real mode)和保护模式(protected mode). 首先我们要知道这两种模式都是CPU的工作模式,实模式是早期CPU运行的工作模式,而保护模式则是现代CPU运行的模式. 但是为什么现代CPU在运行boot loader时仍旧要先进入实模式呢?就是为了实现软件的向后兼容性不得已才这样的. 下面我们分别看下这两种工作模式的基本原理. 实模式(real mode) 实模式出现于早期8088CPU时期.当时由于CPU…
Ext.Net学习笔记17:Ext.Net GridPanel Selection 接下来是Ext.Net的GridPanel的另外一个功能:选择. 我们在GridPanel最开始的用法中已经见识过如何使用选择功能,今天我们这片笔记将更加详细的介绍Ext.Net GridPanel的Selection功能. Ext.Net GridPanel Selection包括三种: RowSelectionModel:行选择模型 CheckboxSelectionModel:带有复选框的行选择模型 Cel…
目标:全文搜索 使用SQL搜索关键字,同时保证快速和精确,依旧是相当地困难. SQL的一个基本原理(以及SQL所继承的关系原理)就是一列中的单个数据是原子性的. 反模式:模式匹配 使用Like 或者正则表达式. 缺点:(1)无法使用索引,进行全表遍历,非常耗时,性能极低. (2)有时候会返回医疗之外的结果.select * from bugs where description like '%one%', 返回结果可能是money.prone.lonely. 正则表达式可能会为单词边界提供一个模…
golang学习笔记17 爬虫技术路线图,python,java,nodejs,go语言,scrapy主流框架介绍 go语言爬虫框架:gocolly/colly,goquery,colly,chromedp,webloop,go_spider,Pholcus https://github.com/hu17889/go_spiderPholcus 幽灵蛛重量级爬虫软件(含3种操作界面) - Golang中国https://www.golangtc.com/p/557473c9b09ecc2aa70…
Question: 做lab过程中越来越迷糊,为什么一会儿虚拟地址是4G 物理地址也是4G ,那这有什么作用呢? 解决途径: 停下来,根据当前lab的进展,再回头看上学期操作系统的ppt & 上网冲浪查资料!意识到自己对于分段机制理解不够. 最强总结:https://www.cnblogs.com/tolimit/p/4775945.html?utm_source=tuicool&utm_medium=referral 解决过程: 分段机制主要功能只有两点: 将物理内存划分为多个段,让操作…
本博客为原创:综合 尚硅谷(http://www.atguigu.com)的系统教程(深表感谢)和 网络上的现有资源(博客,文档,图书等),资源的出处我会标明 本博客的目的:①总结自己的学习过程,相当于学习笔记 ②将自己的经验分享给大家,相互学习,互相交流,不可商用 内容难免出现问题,欢迎指正,交流,探讨,可以留言,也可以通过以下方式联系. 本人互联网技术爱好者,互联网技术发烧友 微博:伊直都在0221 QQ:951226918 ---------------------------------…
cluster模块概览 node实例是单线程作业的.在服务端编程中,通常会创建多个node实例来处理客户端的请求,以此提升系统的吞吐率.对这样多个node实例,我们称之为cluster(集群). 借助node的cluster模块,开发者可以在几乎不修改原有项目代码的前提下,获得集群服务带来的好处. 集群有以下两种常见的实现方案,而node自带的cluster模块,采用了方案二. 方案一:多个node实例+多个端口 集群内的node实例,各自监听不同的端口,再由反向代理实现请求到多个端口的分发.…
未经许可谢绝以任何形式对本文内容进行转载! 本篇接着上一篇对kernel的分析. (5)pte_t * pgdir_walk(pde_t *pgdir, const void *va, int create) 这个函数是整个JOS操作系统页式内存管理最重要的函数.在这个函数中,JOS的设计者要求我们对于给定的一个页目录"pgdir",返回线性地址(这是虚拟地址)"va"对应的页表入口地址.先用MIT自己的一张图来解释下整个地址转换的过程: 在本函数中,返回值就是上图…
未经许可谢绝以任何形式对本文内容进行转载! 在文章开头不得不说的是,因为这部分的代码需要仔细理清的东西太多,所以导致这篇分析显得很啰嗦,还请谅解. 我们在上一篇文章已经分析了Boot Loader的功能,现在我们来分析由Boot Loader加载到内存里的kernel.从MAKEFILE文件可以看出kernel由以下几部分代码组成(注:这里给出的列表是进行lab2时的代码,即比lab1多了pmap.c等文件,由lab1更新到lab2需要用到Git,具体操作仅贴出参考链接:http://www.x…
未经许可谢绝以任何形式对本文内容进行转载! 一.环境配置 关于MIT课程中使用的JOS的配置教程网上已经有很多了,在这里就不做介绍,个人使用的是Ubuntu 16.04 + qemu.另注,本文章中贴出的代码均是JOS中未经修改的源代码,其中有一些细节是MIT课程中要求学生自己实现的. 二.Boot Loader代码分析 1.boot.S(AT&T汇编格式) #include <inc/mmu.h> # Start the -bit protected mode, jump into…
这是17年暑假学习Linux汇编语言的笔记记录,参考书目为清华大学出版社 Jeff Duntemann著 梁晓辉译<汇编语言基于Linux环境>的书,喜欢看原版书的同学可以看<Assembly Language Step-By-Setp:Programming with Linux 3rd Edition>,非常感谢该书的作者和译者,谢谢你们提供了这么好的学习材料.…
     代表Http请求.      所有的属性都是字符串型. 17.1 属性 (1) method:请求方法类型,比如"GET"."POST" (2) uri: 请求的uri (3) path:请求路径,作为uri的一部分. (4) query:查询字符串:作为uri的一部分. (5) version:HTTP的版本,比如"HTTP/1.1". (6) headers:http 头部字典: (7) body:请求的主体内容,为二进制字符串:…
17 1.进程间通信4种方式 2.OpenClipboard打开剪贴板 3.EmptyClipboard清空剪贴板,并把所有权分配给打开剪贴板的窗口 4.SetClipboardData设置剪贴板数据格式 5.GlobalAlloc从堆中分配内存 6.GlobalLock对全局内存对象加锁,返回内存指针 7.GlobalUnlock解锁内存对象 8.发送剪贴板步骤: OpenClipboard打开剪贴板 EmptyClipboard清空剪贴板 SetClipboardData设置数据类型 Glo…