Tensorflow框架之AlexNet】的更多相关文章

from datetime import datetime import math import time import tensorflow as tf batch_size=32 num_batches=100 n_output=100 #定义显示节点的函数 def print_activations(t): print(t.op.name, ' ',t.get_shape().as_list()) #定义inference函数:该函数接受图像作为输入,返回最后一层pool5及相关参数 de…
1. MNIST数据集 1.1 概述 Tensorflow框架载tensorflow.contrib.learn.python.learn.datasets包中提供多个机器学习的数据集.本节介绍的是MNIST数据集,其功能都定义在mnist.py模块中. MNIST是一个入门级的计算机视觉数据集,它包含各种手写数字图片: 图 11 它也包含每一张图片对应的标签,告诉我们这个是数字几.比如,上面这四张图片的标签分别是5,0,4,1 1.2 加载 有两种方式可以获取MNIST数据集: 1) 自动下载…
1. Iris data set Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理.Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集.数据集包含150个数据集,分为3类,每类50个数据,每个数据包含4个属性.可通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪一类. 该数据集包含了5个属性: Sepal.Length(花萼长度),单位是cm; Sepal.Width(花萼宽度)…
简介:Tensorflow是google于2015年11月开源的第二代机器学习框架. Tensorflow名字理解:图形边中流动的数据叫张量(Tensor),因此叫Tensorflow 既 张量流动 的意思. Tensorflow支持的开发语言包括c++ / python / java 等主流语言,支持的平台包括Linux,OSX,windows,移动平台等. Tensorflow基于OP(操作)的特点方便研究人员构造新的东西. Tensorflow的应用实例:腾讯优图实验室通过借助多机多卡的T…
一.前述 本文讲述用Tensorflow框架实现SoftMax模型识别手写数字集,来实现多分类. 同时对模型的保存和恢复做下示例. 二.具体原理 代码一:实现代码 #!/usr/bin/python # -*- coding: UTF-8 -*- # 文件名: 12_Softmax_regression.py from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf # mn.SOURCE…
一.前述 TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流图的一端流动到另一端计算过程.TensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统. 二.相关概念和安装 TensorFlow中的计算可以表示为一个有向图(DirectedGraph)或者称计算图(ComputationGraph)其中每一…
1. 在我们学习中,调试超参数是非常重要的. 超参数的调试可以是a学习率,(β1和β2,ε)在Adam梯度下降中使用, layers层数, hidden units 隐藏层的数目, learning_rate_dacay 学习率衰减, mini-batch size 每次迭代的样本数目 当需要调节的参数的数目较多时,我们通常使用随机参数选择进行参数调节. 比如学习率的范围为0.0001 - 1 , 在0.0001-0.001之间,样本随学习率的变化较大,因此有必要增加这部分的权重,我们使用log…
选择下载安装Anaconda3.4.2.0-python3.5版本安装(3.6版本不适合后面opencv-python的安装): 打开Anaconda Prompt命令窗口编辑界面(黑窗口),输入python,测试python的安装效果,显示安装的python的安装版本号即安装成功: 从Anaconda Prompt命令界面上输入pip install tensorflow回车,即可在线下载安装tensorflow框架:tensorflow框架分cpu和gpu版本,一般cpu版本即可: 下载安装…
2. 神经网络的搭建以及迁移学习的测试 7.项目总结 通过本次水果图片卷积池化全连接试验分类项目的实践,我对卷积.池化.全连接等相关的理论的理解更加全面和清晰了.试验主要采用python高级编程语言的TensorFlow和Keras这两个库.在实验学习的过程中,开始时,对于TensorFlow和Keras并不是很了解,里面提供的许多方法也不熟悉,但经过老师课堂的讲解和演示一些关键的.和常用的方法或函数,以及对相关参数的传递.变化,如:权值的变化.图片尺寸的变化.图片通道的变化.偏置的设置.优化函…
TensorFlow框架 关注公众号"轻松学编程"了解更多. 一.简介 ​ TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理. ​ Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流图的一端流动到另一端的计算过程. ​ TensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统. TensorFlow可被用于语音识别和图像识别等多项机器学习和深…
系列博客链接: (一)TensorFlow框架介绍:https://www.cnblogs.com/kongweisi/p/11038395.html (二)TensorFlow框架之图与TensorBoard:https://www.cnblogs.com/kongweisi/p/11038517.html (三)TensorFlow框架之会话:https://www.cnblogs.com/kongweisi/p/11038550.html (四)TensorFlow框架之张量:https:…
系列博客链接: (一)TensorFlow框架介绍:https://www.cnblogs.com/kongweisi/p/11038395.html (二)TensorFlow框架之图与TensorBoard:https://www.cnblogs.com/kongweisi/p/11038517.html (三)TensorFlow框架之会话:https://www.cnblogs.com/kongweisi/p/11038550.html 本文概述: 知道常见的TensorFlow创建张量…
系列博客链接: (一)TensorFlow框架介绍:https://www.cnblogs.com/kongweisi/p/11038395.html (二)TensorFlow框架之图与TensorBoard:https://www.cnblogs.com/kongweisi/p/11038517.html 本文概述: 应用sess.run或者eval运行图程序并获取张量值 应用feed_dict机制实现运行时填充数据 应用placeholder实现创建占位符 1.会话 一个运行TensorF…
系列博客链接: (一)TensorFlow框架介绍:https://www.cnblogs.com/kongweisi/p/11038395.html 本文概述: 说明图的基本使用 应用tf.Graph创建图.tf.get_default_graph获取默认图 知道开启TensorBoard过程 知道图当中op的名字 1.什么是图结构 图包含了一组tf.Operation代表计算单元的对象和tf.Tensor代表计算单元之间流动的数据. 2.图相关操作 2.1 图中操作.会话默认属性 默认op.…
系列博客链接: (第二章第一部分)TensorFlow框架之文件读取流程:https://www.cnblogs.com/kongweisi/p/11050302.html (第二章第二部分)TensorFlow框架之读取图片数据:https://www.cnblogs.com/kongweisi/p/11050539.html (第二章第三部分)TensorFlow框架之读取二进制数据:https://www.cnblogs.com/kongweisi/p/11050546.html 本文概述…
系列博客链接: (第二章第一部分)TensorFlow框架之文件读取流程:https://www.cnblogs.com/kongweisi/p/11050302.html (第二章第二部分)TensorFlow框架之读取图片数据:https://www.cnblogs.com/kongweisi/p/11050539.html 本文概述: 目标 应用tf.FixedLengthRecordReader实现二进制文件读取 应用tf.decode_raw实现解码二进制数据 应用 CIFAR10类图…
系列博客链接: (第二章第一部分)TensorFlow框架之文件读取流程:https://www.cnblogs.com/kongweisi/p/11050302.html 本文概述: 目标 说明图片数字化的三要素 说明图片三要素与张量的表示关系 了解张量的存储和计算类型 应用tf.image.resize_images实现图像的像素改变 应用tf.train.start_queue_runners实现读取线程开启 应用tf.train.Coordinator实现线程协调器开启 应用tf.tra…
系列博客链接: (一)TensorFlow框架介绍:https://www.cnblogs.com/kongweisi/p/11038395.html (二)TensorFlow框架之图与TensorBoard:https://www.cnblogs.com/kongweisi/p/11038517.html (三)TensorFlow框架之会话:https://www.cnblogs.com/kongweisi/p/11038550.html (四)TensorFlow框架之张量:https:…
一.Tensorflow基本概念 1.使用图(graphs)来表示计算任务,用于搭建神经网络的计算过程,但其只搭建网络,不计算 2.在被称之为会话(Session)的上下文(context)中执行图 3.使用张量(tensor)表示数据,用“阶”表示张量的维度.关于这一点需要展开一下 0阶张量称为标量,表示单独的一个数 1阶张量称为向量, 表示一个一维数组 2阶张量称为矩阵,表示一个二维数组 …… 张量是几阶的可以通过张量右边的方括号数来判断.例如 t = [ [ [    ] ] ],显然这个…
Tensorflow是一个非常好用的deep learning框架 学完了cs231n,大概就可以写一个CNN做一下MNIST了 tensorflow具体原理可以参见它的官方文档 然后CNN的原理可以直接学习cs231n的课程. 另外这份代码本地跑得奇慢..估计用gpu会快很多. import loaddata import tensorflow as tf #生成指定大小符合标准差为0.1的正态分布的矩阵 def weight_variable(shape): initial = tf.tru…
本文来自网易云社区 作者:汪洋 前言 新手学习可以点击参考Google的教程.开始前,我们先在本地安装好 TensorFlow机器学习框架. 首先我们在本地window下安装好python环境,约定安装3.6版本: 安装Anaconda工具集后,创建名为 tensorflow 的conda 环境:conda create -n tensorflow pip python=3.6: conda切换环境:activate tensorflow: 我们安装支持CPU的TensorFlow版本(快速):…
1,AlexNet网络的创新点 AlexNet将LeNet的思想发扬光大,把CNN的基本原理应用到了很深很宽的网络中.AlexNet主要使用到的新技术点如下: (1)成功使用ReLU作为CNN的激活函数,并验证其效果在较深的网络超过了Sigmoid,成功解决了Sigmoid在网络较深时的梯度弥散问题.虽然ReLU激活函数在很久之前就被提出了,但直到AlexNet的出现才将其发扬光大. 在最初的感知机模型中,输入和输出的关系如下: 虽然只是单纯的线性关系,这样的网络结构有很大的局限性:即使用很多这…
接下来会更新一系列博客,介绍TensorFlow的入门使用,尽可能详细. 本文概述: 说明TensorFlow的数据流图结构 1.数据流图介绍  TensorFlow是一个采用数据流图(data flow graphs),用于数值计算的开源软件库.节点(Operation)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor). 2.案例:TensorFlow实现一个加法运算 2.1 代码 # 实现一个加法运算 con_a = tf.constan…
本章概述:在第一章的系列文章中介绍了tf框架的基本用法,从本章开始,介绍与tf框架相关的数据读取和写入的方法,并会在最后,用基础的神经网络,实现经典的Mnist手写数字识别. 有四种获取数据到TensorFlow程序的方法: tf.dataAPI:轻松构建复杂的输入管道.(优选方法,在新版本当中) QueueRunner:基于队列的输入管道从TensorFlow图形开头的文件中读取数据(这里主要介绍这种) Feeding:运行每一步时,Python代码提供数据.(在第一章简单介绍了,配合占位符p…
1. Getting Start 1.1 import TensorFlow应用程序需要引入编程架包,才能访问TensorFlow的类.方法和符号.如下所示的方法: import tensorflow as tf 2. Tensor TensorFlow用Tensor这种数据结构来表示所有的数据.可以把一个Tensor想象成一个n维的数组或列表.Tensor有一个静态的类型和动态的维数.Tensor可以在图中的节点之间流通. 2.1 秩(Rank) Tensor对象由原始数据组成的多维的数组,T…
为了更方便 TensorFlow 程序的理解.调试与优化,TensorFlow发布了一套叫做 TensorBoard 的可视化工具.你可以用 TensorBoard 来展现你的 TensorFlow 图像,绘制图像生成的定量指标图以及附加数据. TensorBoard工具通过读取TensorFlow产生的事件(events)文件来进行图像绘制,其中这个事件文件是在运行TensorFlow时产生的summary数据.简单地说,可以将TensorBoard的使用分为两步:数据序列化和启动Tensor…
1. Getting Start 1.1 import TensorFlow应用程序需要引入编程架包,才能访问TensorFlow的类.方法和符号.如下所示的方法: import tensorflow as tf 2. Tensor TensorFlow用Tensor这种数据结构来表示所有的数据.可以把一个Tensor想象成一个n维的数组或列表.Tensor有一个静态的类型和动态的维数.Tensor可以在图中的节点之间流通. 2.1 秩(Rank) Tensor对象由原始数据组成的多维的数组,T…
1. 卷积神经网络 1.1 多层前馈神经网络 多层前馈神经网络是指在多层的神经网络中,每层神经元与下一层神经元完全互连,神经元之间不存在同层连接,也不存在跨层连接的情况,如图 11所示. 图 11 对于上图中隐藏层的第j个神经元的输出可以表示为: 其中,f是激活函数,bj为每个神经元的偏置. 1.2 卷积神经网络 1.2.1 网络结构 卷积神经网络与多层前馈神经网络的结构不一样,其每层神经元与下一层神经元不是全互连,而是部分连接,即每层神经层中只有部分的神经元与下一层神经元有连接,但是神经元之间…
初学者的时间大部分浪费在了环境上了: 建议直接上Linux系统,我推荐国产的深度系统,deepin这几年一直在不断的发展,现在15.4已经很不错了 1,图形化界面很漂亮,内置正版crossover,并且做了优化.可以不用折腾的安装日常使用的软件,很是节约时间,不玩游戏的话可以放弃Windows了. 2,配置好系统后要备份好系统,尤其是新手,系统总是坏 Python环境下安装TensorFlow比较麻烦,Linux还要解决各种依赖问题: 建议使用开源的Python发行版本,自动解决依赖问题,可设置…
一.前述 TensorBoard是tensorFlow中的可视化界面,可以清楚的看到数据的流向以及各种参数的变化,本文基于一个案例讲解TensorBoard的用法. 二.代码 设计一个MLP多层神经网络来训练数据 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data max_steps = 1000#最大迭代次数 learning_rate = 0.001#学习率 dropout =…