逻辑回归和sigmoid函数分类】的更多相关文章

逻辑回归和sigmoid函数分类:容易欠拟合,分类精度不高,计算代价小,易于理解和实现 sigmoid函数与阶跃函数的区别在于:阶跃函数从0到1的跳跃在sigmoid函数中是一个逐渐的变化,而不是突变. logistic 回归分类器:在每个特征上乘以一个回归系数,然后将所有的结果值相加,将这个总和代入到sigmoid函数中,得到一个在0-1之间的数值,大于0.5分为1类,小于0.5分为0类.所以,逻辑回归也可以被看作是一种概率估计. 关键在于求最佳回归系数. 1.基于最优化方法的最佳回归系数确定…
                                                    大白话5分钟带你走进人工智能-第二十节逻辑回归和Softmax多分类问题(5) 上一节中,我们讲解了逻辑回归的优化,本节的话我们讲解逻辑回归做多分类问题以及传统的多分类问题,我们用什么手段解决. 先看一个场景,假如我们现在的数据集有3个类别,我们想通过逻辑回归建模给它区分出来.但我们知道逻辑回归本质上是区分二分类的算法模型.难道没有解决办法了吗?办法还是有的,既然想分出3类,我们姑且称这3个类…
##Logstic回归采用sigmoid函数的原因(sigmoid函数能表示二项分布概率的原因) sigmoid函数: ![](http://images2017.cnblogs.com/blog/1330912/201802/1330912-20180206134900638-2098675329.jpg) 直觉上,采用sigmoid函数来模拟(0, 1)段函数是因为sigmoid函数接近(0, 1)分段函数且连续可导(即数学性质好). ###从分布的角度进行理解 **指数族分布**: ![]…
import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import random #sigmoid函数定义def sigmoid(x): # print('sigmoid:',x,1.0 / (1+math.exp(-x))) return 1.0 / (1+ np.exp(-x))#模拟数据x = [-2,6,-2,7,-3,3,0,8,1,10,2,12,2,5,3,6,4,5,2,15,1,1…
此部分内容是对机器学习实战一书的第五章的数学推导,主要是对5.2节代码实现中,有一部分省去了相关的公式推导,这里进行了推导,后续会将算法进行java实现.此部分同样因为公式较多,采用手写推导,拍照记录的方式. 第一部分推导目标函数 第二部分采用梯度下降方法进行优化 至此两部分就完成了对logistics回归的公式推导.…
Classification It's not a good idea to use linear regression for classification problem. We can use logistic regression algorism, which is a classification algorism 想要\(0\le h_{\theta}(x) \le 1\), 只需要使用sigmoid function (又称为logistic function) \[ \larg…
引言 机器学习栏目记录我在学习Machine Learning过程的一些心得笔记,涵盖线性回归.逻辑回归.Softmax回归.神经网络和SVM等等.主要学习资料来自Standford Andrew Ng老师在Coursera的教程以及UFLDL Tutorial,Stanford CS231n等在线课程和Tutorial,同一时候也參考了大量网上的相关资料(在后面列出). 前言 本文主要介绍逻辑回归的基础知识.文章小节安排例如以下: 1)逻辑回归定义 2)如果函数(Hypothesis func…
在说逻辑回归前,还是得提一提他的兄弟,线性回归.在某些地方,逻辑回归算法和线性回归算法是类似的.但它和线性回归最大的不同在于,逻辑回归是作用是分类的. 还记得之前说的吗,线性回归其实就是求出一条拟合空间中所有点的线.逻辑回归的本质其实也和线性回归一样,但它加了一个步骤,逻辑回归使用sigmoid函数转换线性回归的输出以返回概率值,然后可以将概率值映射到两个或更多个离散类. 如果给出学生的成绩,比较线性回归和逻辑回归的不同如下: 线性回归可以帮助我们以0-100的等级预测学生的测试分数.线性回归预…
本作业使用逻辑回归(logistic regression)和神经网络(neural networks)识别手写的阿拉伯数字(0-9) 关于逻辑回归的一个编程练习,可参考:http://www.cnblogs.com/hapjin/p/6078530.html 下面使用逻辑回归实现多分类问题:识别手写的阿拉伯数字(0-9),使用神经网络实现:识别手写的阿拉伯数字(0-9),请参考:神经网络实现 数据加载到Matlab中的格式如下: 一共有5000个训练样本,每个训练样本是400维的列向量(20X…
逻辑回归 对于一个二分类(binary classification)问题,\(y \in \left\{0, 1\right\}\),如果直接用线性回归去预测,结果显然是非常不准确的,所以我们采用一种新的假设函数: \[ h_{\theta}(x) = g(\theta^{T}x) = \frac{1}{1 + e^{-\theta^{T}x}} \] 其中 \[ g(z) = \frac{1}{1 + e^{-z}} \] 被称为sigmoid函数,这个函数的的值域是\((0, 1)\),且…