[实战]yolov8 tensorrt模型加速部署 TensorRT-Alpha基于tensorrt+cuda c++实现模型end2end的gpu加速,支持win10.linux,在2023年已经更新模型:YOLOv8, YOLOv7, YOLOv6, YOLOv5, YOLOv4, YOLOv3, YOLOX, YOLOR,pphumanseg,u2net,EfficientDet. Windows10教程正在制作,可以关注仓库:https://github.com/FeiYull/Tens…
Windows10下yolov8 tensorrt模型加速部署[实战] TensorRT-Alpha基于tensorrt+cuda c++实现模型end2end的gpu加速,支持win10.linux,在2023年已经更新模型:YOLOv8, YOLOv7, YOLOv6, YOLOv5, YOLOv4, YOLOv3, YOLOX, YOLOR,pphumanseg,u2net,EfficientDet. 关注仓库<TensorRT-Alpha>:https://github.com/Fei…
Win10下yolov8 tensorrt模型加速部署[实战] TensorRT-Alpha基于tensorrt+cuda c++实现模型end2end的gpu加速,支持win10.linux,在2023年已经更新模型:YOLOv8, YOLOv7, YOLOv6, YOLOv5, YOLOv4, YOLOv3, YOLOX, YOLOR,pphumanseg,u2net,EfficientDet. 关注仓库<TensorRT-Alpha>:https://github.com/FeiYull…
 背景描述: 客户的实际情况是需要在具体系统构架前,通过与厂商讨论确定最终的系统架构方案. 需求是客户自己有管理系统,希望建立一个独立的报表服务器,该报表服务器可以对多个管理系统提供报表服务,不知道润乾产品可以提供多少种报表的调用方式可以选择. 其次,希望可以通过API调用报表的某些功能,但是不知道服务器间访问如何调用API接口. 第三,报表访问时,需要防止直接拷贝url访问.而且其他系统调用报表时,也可以配置报表的授权情况. 相应解答: 由于客户需要的并非一个明确的技术答复,而是希望厂商给…
NVIDIA Jarvis:一个GPU加速对话人工智能应用的框架 Introducing NVIDIA Jarvis: A Framework for GPU-Accelerated Conversational AI Applications 实时会话人工智能是一项复杂而富有挑战性的任务.为了允许与最终用户进行实时.自然的交互,模型需要在300毫秒内完成计算.自然的相互作用具有挑战性,需要多模态的感觉整合.模型管道也很复杂,需要跨多个服务进行协调: 自动语音识别(ASR) 自然语言理解(NLU…
构建可扩展的GPU加速应用程序(NVIDIA HPC) 研究人员.科学家和开发人员正在通过加速NVIDIA GPU上的高性能计算(HPC)应用来推进科学发展,NVIDIA GPU具有处理当今最具挑战性的科学问题的计算能力.从计算科学到人工智能,GPU加速应用正在带来突破性的科学发现.流行的语言如C.C++.FORTRAN和Python正被用来开发.优化和部署这些应用程序. 面向HPC的GPU程序设计 NVIDIA GPU可以编程得很像CPU.从替换GPU优化的数学库开始.使用标准C++并行算法和…
转载于统计之都,http://cos.name/tag/dmlc/,作者陈天奇 ------------------------------------------------------------ Matt︱R语言调用深度学习架构系列引文 R语言︱H2o深度学习的一些R语言实践--H2o包 R用户的福音︱TensorFlow:TensorFlow的R接口 mxnet:结合R与GPU加速深度学习 碎片︱R语言与深度学习 sparklyr包:实现Spark与R的接口,会用dplyr就能玩Spar…
Numba:高性能计算的高生产率 在这篇文章中,笔者将向你介绍一个来自Anaconda的Python编译器Numba,它可以在CUDA-capable GPU或多核cpu上编译Python代码.Python通常不是一种编译语言,你可能想知道为什么要使用Python编译器.答案当然是:运行本地编译的代码要比运行动态的.解译的代码快很多倍.Numba允许你为Python函数指定类型签名,从而在运行时启用编译(这就是“Just-in-Time”,即时,也可以说JIT编译).Numba动态编译代码的能力…
GPU加速库AmgX AmgX提供了一条简单的途径来加速NVIDIA GPU上的核心求解器技术.AmgX可以为模拟的计算密集型线性求解器部分提供高达10倍的加速度,特别适合于隐式非结构化方法. 它是一个高性能,最新的库,并包括灵活的求解器组合系统,使用户可以轻松构造复杂的嵌套求解器和预处理器. 查看以下案例研究和白皮书: AmgX:工业应用的多网格加速线性求解器 AmgX V1.0:使用经典AMG启用储层模拟 AmgX:一个用于GPU加速的代数多重网格和预处理迭代方法的库 立即开始使用AmgX…
GPU加速:宽深度推理 Accelerating Wide & Deep Recommender Inference on GPUs 推荐系统推动了许多最流行的在线平台的参与.随着为这些系统提供动力的数据量的快速增长,数据科学家正越来越多地从更传统的机器学习方法转向高度表达的深度学习模型,以提高其建议的质量.Google的广度和深度架构已经成为解决这些问题的一种流行的模型选择,既有其对信号稀疏性的鲁棒性,也有其通过DNN线性组合分类器API在TensorFlow中的用户友好实现.虽然这些深度学习…