基于Python语言的数据可视化工具】的更多相关文章

http://www.cnblogs.com/kallan/p/5160017.html…
基于Python的Grib数据可视化           利用Python语言实现Grib数据可视化主要依靠三个库——pygrib.numpy和matplotlib.pygrib是欧洲中期天气预报中心(ECMWF)的GRIG API C库的Python接口,通过这个库可以将Grib数据读取出来:numpy是Python的一种开源的数值计算扩展,这种工具可用来存储和处理大型矩阵:matplotlib是python著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地进行制图:…
文章标题: 一行导出所有任意微软SQL serer数据脚本-基于Python的微软官方mssql-scripter工具使用全讲解 关键字 : mssql-scripter,SQL Server 文章分类: 技术分享 创建时间: 2020年3月30日 _.-"\ _.-" \ ,-" \ \ \ \ \Zoomla逐浪CMS\ \ \ web开发秘笈\ \ \ \ z01.com _.-; \ \ _.-" : \ \,-" _.-" \( _.-…
Linux 上的数据可视化工具 5 种开放源码图形化工具简介 Linux® 上用来实现数据的图形可视化的应用程序有很多,从简单的 2-D 绘图到 3-D 制图,再到科学图形编程和图形模拟.幸运的是,这方面的工具有很多开放源码实现,包括 gnuplot.GNU Octave.Scilab.MayaVi.Maxima 等.每个工具都有自己的优缺点,并且都是针对不同的应用程序而设计的.对这些开放源码图形可视化工具进行一下探索,有助于我们更好地决定哪个工具最适合我 们的应用程序. 0 评论: M. Ti…
相关文章链接 CentOS6安装各种大数据软件 第一章:各个软件版本介绍 CentOS6安装各种大数据软件 第二章:Linux各个软件启动命令 CentOS6安装各种大数据软件 第三章:Linux基础软件的安装 CentOS6安装各种大数据软件 第四章:Hadoop分布式集群配置 CentOS6安装各种大数据软件 第五章:Kafka集群的配置 CentOS6安装各种大数据软件 第六章:HBase分布式集群的配置 CentOS6安装各种大数据软件 第七章:Flume安装与配置 CentOS6安装各…
我的新书,<基于股票大数据分析的Python入门实战>,预计将于2019年底在清华出版社出版. 如果大家对大数据分析有兴趣,又想学习Python,这本书是一本不错的选择.从知识体系上来看,这本书的内容涵盖了开发Python企业级项目所需的知识点,包括但不限于Python基础语法知识.基于Pandas的大数据分析技术.基于Matplotlib的可视化编程技术.Python爬虫技术和基于Django的网络编程技术,甚至还在本书的最后,讲述了机器学习编程技术. 这本书的大多数范例程序是基于股票分析的…
自动化测试基础 一. 软件测试分类 1.1 根据项目流程阶段划分软件测试 1.1.1 单元测试 单元测试(或模块测试)是对程序中的单个子程序或具有独立功能的代码段进行测试的过程. 1.1.2 集成测试 集成测试是在单元测试的基础上,先通过单元模块组装成系统或子系统,再进行测试.重点是检查模块之间的接口是否正确. 1.1.3 系统测试 系统测试是针对整个产品系统进行的测试,验证系统是否满足需求规格的定义,以及软件系统的正确性和性能等是否满足其需求规格的要求. 1.1.4 验收测试 验收测试是部署软…
关于本书的类型: 首先在我看来技术书分为两类,一类是“思想”,一类是“操作手册”. 对于思想类的书,一般作者有很多年经验积累,这类书需要细读与品位.高手读了会深有体会,豁然开朗.新手读了不止所云,甚至会说,都在扯犊子,看了半天也不知道如何下手. 对于操作手册的书,一般会提供大量的实例,告诉你详细的步骤.对于高手来说,这不就是翻译了一下官方文档嘛,好意思拿来骗钱.但对于新手来说,反而认为是好处,跟着上面的步骤操作就掌握了某种技术能力. 显然,本书属于后者,书中提供了大量代码实例,并没有太多思想层面…
基于python语言的tensorflow的‘端到端’的字符型验证码识别 1   Abstract 验证码(CAPTCHA)的诞生本身是为了自动区分 自然人 和 机器人 的一套公开方法, 但是近几年的人工智能技术的发展,传统的字符验证已经形同虚设. 所以,大家一方面研究和学习此代码时,另外一方面也要警惕自己的互联网系统的web安全问题. Keywords: 人工智能,Python,字符验证码,CAPTCHA,识别,tensorflow,CNN,深度学习 2   Introduction 全自动区…
1. TPOT介绍 一般来讲,创建一个机器学习模型需要经历以下几步: 数据预处理 特征工程 模型选择 超参数调整 模型保存 本文介绍一个基于遗传算法的快速模型选择及调参的方法,TPOT:一种基于Python的自动机器学习开发工具.项目源代码位于:https://github.com/EpistasisLab/tpot 下图是一个机器学习模型开发图,其中灰色部分代表TPOT将要做的事情:即通过利用遗传算法,分析数千种可能的组合,为模型.参数找到最佳的组合,从而自动化机器学习中的模型选择及调参部分.…