Hive整体优化策略】的更多相关文章

一 整体架构优化 现在hive的整体框架如下,计算引擎不仅仅支持Map/Reduce,并且还支持Tez.Spark等.根据不同的计算引擎又可以使用不同的资源调度和存储系统. 整体架构优化点: 1 根据不同业务需求进行日期分区,并执行类型动态分区. 相关参数设置: 0.14中默认hive.exec.dynamic.partition=ture 2 为了减少磁盘存储空间以及I/O次数,对数据进行压缩 相关参数设置: job输出文件按照BLOCK以Gzip方式进行压缩. mapreduce.outpu…
一.Hive 执行过程实例分析 1.join 对于 join 操作:SELECT pv.pageid, u.age FROM page_view pv JOIN user u ON (pv.userid = u.userid); 执行的最后结果条数: page_view 表中的 userid 数目 * user 表中的 userid 数目 实现过程:Map: (1)以 JOIN ON 条件中的列作为 Key,如果有多个列,则 Key 是这些列的组合(2)以 JOIN 之后所关心的列作为 Valu…
1.hive抓取策略     hive.fetch.task.conversion = more/none     more不走mr,none走mr   2.explain 显示执行计划   3.设置本地运行模式     set hive.exec.mode.local.auto = true     hive.exec.mode.local.inputbytes.max 默认128M,表示加载文件的最大值,若大于该配置仍会以集群方式运行   4.并行计算     Set hive.exec.p…
Mapreduce自身的特点: 1.IO和网络负载大:优化策略:减少IO和网络负载. 2.内存负载不大.优化策略:增大内存使用率: 3.CPU负载不大.优化策略:增大CPU使用率: (hive的优化应当根据mapreduce的作业特点和自己的作业实际需求进行优化) 优化1.合并输入 淘宝一个大型项目,上万Hive作业进行合并输入. A.单个作业 B.多个作业 作业间的血缘关系:作业间相同的查询,相同的源表. 优化2.源表归纳,常用复杂或低效统计统一给出,以避免上层作业过多计算 如低性能的UDF.…
hive优化目标 在有限的资源下,运行效率高. 常见问题 数据倾斜.Map数设置.Reduce数设置等 hive运行 查看运行计划 explain [extended] hql 例子 explain select no,count(*) from testudf group by no; explain extended select no,count(*) from testudf group by no; 运行阶段 STAGE DEPENDENC1ES: Stage-1 is a root…
1.概述 继续<那些年使用Hive踩过的坑>一文中的剩余部分,本篇博客赘述了在工作中总结Hive的常用优化手段和在工作中使用Hive出现的问题.下面开始本篇文章的优化介绍. 2.介绍 首先,我们来看看Hadoop的计算框架特性,在此特性下会衍生哪些问题? 数据量大不是问题,数据倾斜是个问题. jobs数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联多次汇总,产生十几个jobs,耗时很长.原因是map reduce作业初始化的时间是比较长的. sum,count,max,mi…
一个Hive查询生成多个Map Reduce Job,一个Map Reduce Job又有Map,Reduce,Spill,Shuffle,Sort等多个阶段,所以针对Hive查询的优化可以大致分为针对MR中单个步骤的优化(其中又会有细分),针对MR全局的优化,和针对整个查询(多MRJob)的优化,下文会分别阐述. 在开始之前,先把MR的流程图帖出来(摘自Hadoop权威指南),方便后面对照.另外要说明的是,这个优化只是针对Hive 0.9版本,而不是后来Hortonwork发起Stinger项…
阅读目录 代码 数据库 缓存 异步 NoSQL JVM调优 多线程与分布式 度量系统(监控.报警.服务依赖管理) 案例一:商家与控制区关系的刷新job 案例二:POI缓存设计与实现 案例三:业务运营后台相关页面的性能优化 add by zhj: 我个人感觉性能优化分析影响性能的因素有哪些,然后按影响力的大小进行排序,然后进行排序. 然后进一步分析每个因素为何会影响性能,把这些因素再找出来,再按影响力大小进行排序.基本上,经过 这两层的分析,基本就够用了.对这些因素思考解决办法. 1. 数据库层…
https://blog.csdn.net/mrlevo520/article/details/76339075 1.介绍 首先,我们来看看Hadoop的计算框架特性,在此特性下会衍生哪些问题? 数据量大不是问题,数据倾斜是个问题. jobs数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联多次汇总,产生十几个jobs,耗时很长.原因是map reduce作业初始化的时间是比较长的. sum,count,max,min等UDAF,不怕数据倾斜问题,hadoop在map端的汇总合…
1.介绍 首先,我们来看看Hadoop的计算框架特性,在此特性下会衍生哪些问题? 数据量大不是问题,数据倾斜是个问题. jobs数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联多次汇总,产生十几个jobs,耗时很长.原因是map reduce作业初始化的时间是比较长的. sum,count,max,min等UDAF,不怕数据倾斜问题,hadoop在map端的汇总合并优化,使数据倾斜不成问题. count(distinct ),在数据量大的情况下,效率较低,如果是多count(…