在计算机视觉和机器学习方向有一个特别好用但是比较低调的库,也就是dlib,与opencv相比其包含了很多最新的算法,尤其是深度学习方面的,因此很有必要学习一下.恰好最近换了一台笔记本,内含一块GTX1060的显卡,可以用来更快地跑深度学习算法.以前用公司HP的工作站配置过dlib,GPU是Quadro K420,用dlib自带的人脸识别算法(ResNet)测试过,相比较1060的速度确实要快上很多.dlib.cuda和cudnn的版本经常会更新,每次重新配置环境会遇到一些问题,在这里记下来吧.…
TVM 优化 ARM GPU 上的移动深度学习 随着深度学习的巨大成功,将深度神经网络部署到移动设备的需求正在迅速增长.与桌面平台上所做的类似,在移动设备中使用 GPU 既有利于推理速度,也有利于能源效率.但是,大多数现有的深度学习框架并不很好地支持移动 GPU.难点在于移动 GPU 架构和桌面 GPU 架构之间的区别.这意味着在移动 GPU 上进行优化需要特别努力.非平凡的额外工作最终导致移动 GPU 在大多数深度学习框架中支持不力. TVM 通过引入统一的 IR 堆栈,解决为不同硬件部署的困…
TVM在ARM GPU上优化移动深度学习 随着深度学习的巨大成功,将深度神经网络部署到移动设备的需求正在迅速增长.与在台式机平台上所做的类似,在移动设备中使用GPU可以提高推理速度和能源效率.但是,大多数现有的深度学习框架都不能很好地支持移动GPU.困难在于移动GPU架构和台式机GPU架构之间的差异.这意味着在移动GPU上进行优化需要付出特殊的努力.繁琐的额外工作最终导致大多数深度学习框架中对移动GPU的支持不佳. TVM通过引入统一的IR堆栈解决了部署不同硬件的困难,通过该IR堆栈可以轻松完成…
Google Colab简介 Google Colaboratory是谷歌开放的一款研究工具,主要用于机器学习的开发和研究.这款工具现在可以免费使用,但是不是永久免费暂时还不确定.Google Colab最大的好处是给广大的AI开发者提供了免费的GPU使用!GPU型号是Tesla K80!你可以在上面轻松地跑例如:Keras.Tensorflow.Pytorch等框架. 官方教程 新手指引:https://medium.com/deep-learning-turkey/google-colab-…
1.ubuntu镜像源准备(防止下载过慢): 参考博文:http://www.cnblogs.com/top5/archive/2009/10/07/1578815.html 步骤如下: 首先,备份一下ubuntu 12.10 原来的源地址列表文件 sudo cp /etc/apt/sources.list /etc/apt/sources.list.old 然后进行修改  sudo gedit /etc/apt/sources.list 可以在里面添加资源地址,直接覆盖掉原来的. 2.使用ap…
本节详细说明一下深度学习环境配置,Ubuntu 16.04 + Nvidia GTX 1080 + Python 3.6 + CUDA 9.0 + cuDNN 7.1 + TensorFlow 1.6. Python 3.6 首先安装 Python 3.6,这里使用 Anaconda 3 来安装,下载地址:https://www.anaconda.com/download/#linux,点击 Download 按钮下载即可,这里下载的是 Anaconda 3-5.1 版本,如果下载速度过慢可以选…
tensorflow目前已经升级至r1.10版本.在之前的深度学习中,我是在MAC的虚拟机上跑CPU版本的tensorflow程序,当数据量变大后,tensorflow跑的非常慢,在内存不足情况下,又容易造成系统崩溃(虚拟机走的是windows7). 配置信息 为了后续的深度学习,不得已,我在京东买了一部组装厂商提供的主机,是网吧特供机.配置如下: CPU i5 8400 6核 16G内存 GPU Geforce 1060 5G版本 240G SSD 硬盘 为什么是这个配置呢?因为该机的配置原来…
  深度学习主机环境配置: Ubuntu16.04+Nvidia GTX 1080+CUDA8.0 发表于2016年07月15号由52nlp 接上文<深度学习主机攒机小记>,这台GTX1080主机准备好之后,就是配置深度学习环境了,这里选择了比较熟悉Ubuntu系统,不过是最新的16.04版本,另外在Nvidia GTX1080的基础上安装相关GPU驱动,外加CUDA8.0,因为都比较新,所以踩了很多坑. 1. 安装Ubuntu16.04 不考虑双系统,直接安装 Ubuntu16.04,从ub…
深度学习“引擎”之争:GPU加速还是专属神经网络芯片? 深度学习(Deep Learning)在这两年风靡全球,大数据和高性能计算平台的推动作用功不可没,可谓深度学习的“燃料”和“引擎”,GPU则是引擎的引擎,基本所有的深度学习计算平台都采用GPU加速.同时,深度学习已成为GPU提供商NVIDIA的一个新的战略方向,以及3月份的GTC 2015的绝对主角. 那么,GPU用于深度学习的最新进展如何?这些进展对深度学习框架有哪些影响?深度学习开发者应该如何发挥GPU的潜力?GPU与深度学习结合的前景…
本文來源地址:https://www.leiphone.com/news/201705/uo3MgYrFxgdyTRGR.html 与“传统” AI 算法相比,深度学习(DL)的计算性能要求,可以说完全在另一个量级上. 而 GPU 的选择,会在根本上决定你的深度学习体验.那么,对于一名 DL 开发者,应该怎么选择合适的 GPU 呢?这篇文章将深入讨论这个问题,聊聊有无必要入手英特尔协处理器 Xeon Phi,并将各主流显卡的性能.性价比制成一目了然的对比图,供大家参考. 先来谈谈选择 GPU 对…