小伙伴们,终于到了实战部分了!今天给大家带来的项目是用PaddlePaddle进行车牌识别.车牌识别其实属于比较常见的图像识别的项目了,目前也属于比较成熟的应用,大多数老牌厂家能做到准确率99%+.传统的方法需要对图像进行多次预处理再用机器学习的分类算法进行分类识别,然而深度学习发展起来以后,我们可以通过用CNN来进行端对端的车牌识别.任何模型的训练都离不开数据,在车牌识别中,除了晚上能下载到的一些包含车牌的数据是不够的,本篇文章的主要目的是教大家如何批量生成车牌. 生成车牌数据 1.定义车牌数…
上节我们讲了第一部分,如何用生成简易的车牌,这节课中我们会用PaddlePaddle来识别生成的车牌. 数据读取 在上一节生成车牌时,我们可以分别生成训练数据和测试数据,方法如下(完整代码在这里): # 将生成的车牌图片写入文件夹,对应的label写入label.txt def genBatch(self, batchSize,pos,charRange, outputPath,size): if (not os.path.exists(outputPath)): os.mkdir(output…
上节我们讲了第一部分,如何用生成简易的车牌,这节课中我们会用PaddlePaddle来识别生成的车牌. 数据读取 在上一节生成车牌时,我们可以分别生成训练数据和测试数据,方法如下(完整代码在这里): # 将生成的车牌图片写入文件夹,对应的label写入label.txt def genBatch(self, batchSize,pos,charRange, outputPath,size): if (not os.path.exists(outputPath)): os.mkdir(output…
这个系列文章主要记录使用keras框架来搭建深度学习模型的学习过程,其中有一些自己的想法和体会,主要学习的书籍是:Deep Learning with Python,使用的IDE是pycharm. 在深度学习中的深度指的是数据模型中包含着的多个层次,而深度学习是对一堆数值做数学运算,但是这种数学运算是高纬度的,是大量的:在这些数学运算中,深度学习中的层通过反馈(比如后向传播)来对参数进行调整,然后再进行计算.如此反复数次,从而越来越接近我们所给出的正确结果.而在这个过程中,深度学习中的每个层所学…
论文标题:Fast R-CNN 论文作者:Ross Girshick 论文地址:https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Girshick_Fast_R-CNN_ICCV_2015_paper.pdf https://arxiv.org/pdf/1504.08083.pdf Fast RCNN 的GitHub地址:https://github.com/rbgirshick/fast-rcnn 参考的Fast…
我觉得把课本上的案例先自己抄一遍,然后将书看一遍.最后再写一篇博客记录自己所学过程的感悟.虽然与课本有很多相似之处.但自己写一遍感悟会更深 电影评论分类(二分类问题) 本节使用的是IMDB数据集,使用Jupyter作为编译器.这是我刚开始使用Jupyter,不得不说它的自动补全真的不咋地(以前一直用pyCharm)但是看在能够分块运行代码的份上,忍了.用pyCharm敲代码确实很爽,但是调试不好调试(可能我没怎么用心学),而且如果你完全不懂代码含义的话,就算你运行成功也不知道其中的含义,代码有点…
该案例主要目的是为了熟悉Keras基本用法,以及了解DNN基本流程. 示例代码: import numpy as np import matplotlib.pyplot as plt from keras.models import Sequential from keras.datasets import mnist from keras.layers import Dense from keras.utils.np_utils import to_categorical #加载数据,训练60…
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 # 输入节点 OUTPUT_NODE = 10 # 输出节点 LAYER1_NODE = 500 # 隐藏层数 BATCH_SIZE = 100 # 每次batch打包的样本个数 # 模型相关的参数 LEARNING_RATE_BASE = 0.8 LEARNING_RATE_DECAY = 0.9…
简介 本文基于HyperLPR进行修改,完整代码参考https://github.com/Liuyubao/PlateRecognition. HyperLPR是一个使用深度学习针对对中文车牌识别的实现,与较为流行的开源的其他框架相比,它的检测速度和鲁棒性和多场景的适应性都要好于目前开源的框架,HyperLPR可以识别多种中文车牌包括白牌,新能源车牌,使馆车牌,教练车牌,武警车牌等. 使用的目标检测器是基于OpenCV的Haar级联分类器.其速度也达到了不错的效果,对于移动端的大车牌基本可以实时…
目录 摘要 1.引言: 2.背景 2.1 数据集 2.2评价指标 3.3D形状分类 3.1基于多视图的方法 3.2基于体素的方法 3.3基于点的方法 3.3.1 点对多层感知机方法 3.3.2基于卷积的方法 3.3.2.1 3D连续卷积网络 3.3.2.2 3D离散卷积网络 3.3.3基于图的方法 3.3.3.1 空间域中的基于图的方法 3.3.3.2 谱域中的基于图的方法 3.3.4基于层级数据结构的方法 3.3.5其他方法 3.4总结 3D点云深度学习:综述(点云形状识别部分) Deep L…