解决HDFS小文件带来的计算问题】的更多相关文章

hive优化 一.小文件简述 1.1. HDFS上什么是小文件? HDFS存储文件时的最小单元叫做Block,Hadoop1.x时期Block大小为64MB,Hadoop2.x时期Block大小为128MB.(在hadoop部署下可以通过dfs.block.size进行设置) 小文件就是指,在HDFS上落地的文件大小远远小于一个Block块大小的文件. 1.2. 小文件形成的原因 1.3. 小文件的危害 内存占用 小文件存储在HDFS上,对应的每个文件都会在namenode中存有相应的元数据信息…
最近发现离线任务对一个增量Hive表的查询越来越慢,这引起了我的注意,我在cmd窗口手动执行count操作查询发现,速度确实很慢,才不到五千万的数据,居然需要300s,这显然是有问题的,我推测可能是有小文件. 我去hdfs目录查看了一下该目录: 发现确实有很多小文件,有480个小文件,我觉得我找到了问题所在,那么合并一下小文件吧: insert into test select * from table distribute by floor (rand()*5); 这里使用distribute…
磁盘: heads/sectors/cylinders,分别就是磁头/扇区/柱面,每个扇区512byte(现在新的硬盘每个扇区有4K) 文件系统: 文件系统不是一个扇区一个扇区的来读数据,太慢了,所以有了block(块)的概念,它是一个块一个块的读取的,block才是文件存取的最小单位. 文件系统中1个块是由连续的8个扇区组成. HDFS: 默认文件大小64M(或者是128M) hive小文件问题解决 问题描述 HDFS的文件元信息,包括位置.大小.分块信息等,都是保存在NameNode的内存中…
本文首发于公众号:五分钟学大数据 小文件产生原因 hive 中的小文件肯定是向 hive 表中导入数据时产生,所以先看下向 hive 中导入数据的几种方式 直接向表中插入数据 insert into table A values (1,'zhangsan',88),(2,'lisi',61); 这种方式每次插入时都会产生一个文件,多次插入少量数据就会出现多个小文件,但是这种方式生产环境很少使用,可以说基本没有使用的 通过load方式加载数据 load data local inpath '/ex…
处理小文件的时候,可以通过org.apache.hadoop.io.SequenceFile.Writer类将所有文件写出到一个seq文件中. 大致流程如下: 实现代码: package study.smallfile.sequence_one; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FSDataInputStream; import…
在真实环境中,处理日志的时候,会有很多小的碎文件,但是文件总量又是很大.普通的应用程序用来处理已经很麻烦了,或者说处理不了,这个时候需要对小文件进行一些特殊的处理——合并. 在这通过编写java应用程序实现文件的合并并上传到HDFS.整体的处理思路是,从本地加载琐碎的小文件并写到HDFS中. package study.smallfile.javaapp; import java.io.File; import java.io.FileInputStream; import java.io.IO…
hadoop不支持传统文件系统的挂载,使得流式数据装进hadoop变得复杂. hadoo中,文件只是目录项存在:在文件关闭前,其长度一直显示为0:如果在一段时间内将数据写到文件却没有将其关闭,则若网络中断后,则我们得到的仅仅是一个空白文件:故:最好编写小文件,这样能尽快将其关闭-----错误. [mapper 单个文件块 1:1] 由于hdfs的元数据保存在NameNode的内存中,因此创建的文件越多,所需的RAM就越多.从MapReduce角度看,小文件会导致效率低下.通常情况下,,每个Map…
使用 使用使用 使用 HDFS 保存大量小文件的缺点:1.Hadoop NameNode 在内存中保存所有文件的“元信息”数据.据统计,每一个文件需要消耗 NameNode600 字节内存.如果需要保存大量的小文件会对NameNode 造成极大的压力.2.如果采用 Hadoop MapReduce 进行小文件的处理,那么 Mapper 的个数就会跟小文件的个数成线性相关(备注:FileInputFormat 默认只对大于 HDFS Block Size的文件进行划分).如果小文件特别多,MapR…
Hive的后端存储是HDFS,它对大文件的处理是非常高效的,如果合理配置文件系统的块大小,NameNode可以支持很大的数据量.但是在数据仓库中,越是上层的表其汇总程度就越高,数据量也就越小.而且这些表通常会按日期进行分区,随着时间的推移,HDFS的文件数目就会逐渐增加.   小文件带来的问题   关于这个问题的阐述可以读一读Cloudera的这篇文章.简单来说,HDFS的文件元信息,包括位置.大小.分块信息等,都是保存在NameNode的内存中的.每个对象大约占用150个字节,因此一千万个文件…
Origin 我们首先理解一下SequenceFile试图解决什么问题,然后看SeqFile怎么解决这些问题. In HDFS 序列文件是解决Hadoop小文件问题的一个方法: 小文件是显著小于HDFS块(128M)的文件: 在HDFS中,每个文件.目录.块都被表示成一个对象,占用150bytes: 10million文件,会占用NameNode 3gb内存: In MapReduce map task通常一次处理一个input block(使用default FileInputFormat):…