VINS 检测回环辅助激光建图】的更多相关文章

最近接到一个任务,在激光检测回环失败时,比如黑色物体多,场景大等,可否利用视觉进行回环检测.如果只是检测回环,现有的许多框架都可以使用.ORB-SLAM本身就有单目模式,且效果不错.但是发现ORB在检测回环时,必须要进行pose计算,产生地图点,然后根据地图点和回环之间的关系进行回环检测.这样就比较耗费资源,可否只检测回环,并不计算位姿与地图点.然后想到VINS也是有单目检测回环功能,就着手从VINS开始. 1. feature_tracker模块 这部分模块无需较大改动,只需要在节点里增加激光…
本文作者任旭倩,公众号:计算机视觉life成员,由于格式原因,公式显示可能出问题,建议阅读原文链接:综述 | SLAM回环检测方法 在视觉SLAM问题中,位姿的估计往往是一个递推的过程,即由上一帧位姿解算当前帧位姿,因此其中的误差便这样一帧一帧的传递下去,也就是我们所说的累积误差.一个消除误差有效的办法是进行回环检测.回环检测判断机器人是否回到了先前经过的位置,如果检测到回环,它会把信息传递给后端进行优化处理.回环是一个比后端更加紧凑.准确的约束,这一约束条件可以形成一个拓扑一致的轨迹地图.如果…
建图模块 mapping_module在初始化系统的时候进行实例化,在构建实例的时候会实例化local_map_cleaner和local_bundle_adjuster.系统启动的时候会在另外一个线程中启动该模块. // src/openvslam/system.cc:78 mapper_ = new mapping_module(map_db_, camera_->setup_type_ == camera::setup_type_t::Monocular); // src/openvsla…
前文废话:这个问题据说是腾讯之前的一道笔试题,由于当时没认真看,现在记不清这种矩阵是不是叫"蛇形回环矩阵"......请大家直接看图1,就是那个样子的矩阵. 问题描述:输入一个N,实现N×N的蛇形回环矩阵(即图1类型) (N=5时的蛇形回环矩阵) 我们先把N为奇数和N为偶数的情况分开.先来看N=3.5.7时的该类矩阵是什么情况:               看上去彼此之间并无规律,对这道题最简单粗暴的解法似乎就是构建一个二维数组,然后按人的正常思维向里填数字构建. 但是--如果用(最大…
回环检测 VINS回环检测与全局优化都在pose_graph.cpp内处理.首先在pose_graph_node加载vocabulary文件给BriefDatabase用,如果要加载地图,会loadPoseGraph, 它会读取一些列文件,然后加载所有的Keyframe.同时在经过一系列回调函数得到建立新的Keyframe所用的数据之后,构造Keyframe,且在其内重新提取更多的特征点并计算描述子,然后pose_graph调用addKeyframe.loadKeyframe 和addKeyfr…
该论文的地址是:https://arxiv.org/pdf/1609.07720.pdf segmatch是一个提供车辆的回环检测的技术,使用提取和匹配分割的三维激光点云技术.分割的例子可以在下面的图片中看到. 该技术是基于在车辆附近提取片段(例如车辆.树木和建筑物的部分),并将这些片段与从目标地图中提取的片段相匹配.分段匹配可以直接转化为精确的定位信息,从而实现精确的三维地图构造和定位.在先前记录的部分(白色)和最近观察到的部分(彩色)之间,匹配的段的实例用绿色线显示在下面的图像中. 该方法依…
上一篇提到,无论在单目.双目还是RGBD中,追踪得到的位姿都是有误差的.随着路径的不断延伸,前面帧的误差会一直传递到后面去,导致最后一帧的位姿在世界坐标系里的误差有可能非常大.除了利用优化方法在局部和全局调整位姿,也可以利用回环检测(loop closure)来优化位姿. 这件事情就好比一个人走在陌生的城市里,一开始还能分清东南西北,但随着在小街小巷转来转去,已经不知道自己在什么地方了.通过认真辨识周边环境,他可以建立起局部的地图信息(局部优化).再回忆以前走过的路径,他可以纠正一些以前的地图信…
之前研究过一些回环检测的内容,首先要看的自然是用词袋回环的鼻祖和正当继承人(没有冒犯VINS和LDSO的意思)ORB-SLAM.下面是我的代码注释.因为代码都是自己手打的,不是在源码上注释的,所以一些我觉得不是太重要的被略过了,可能也会有一些typo. ORB的回环策略比较偏向seq-SLAM的思路,通过共视帧打包的关系,比较每个包的相似值,而非只是关注单帧和单帧的匹配,这个思路是比较合适的,但是VINS和LDSO两位后来者用实际行动证明了我不太看中你这种思路,两个都没有用.后续我会介绍一些VI…
转载请注明出处,谢谢 原创作者:Mingrui 原创链接:https://www.cnblogs.com/MingruiYu/p/12634631.html 写在前面 最近在搞本科毕设,关于基于深度学习的 SLAM 回环检测方法.期间,为了锻炼自己的工程实现能力,(也为了增添毕设的工作量,显得不那么水),我自己写了一个简单的双目 SLAM 系统,其中嵌入了一种基于深度学习的轻量级回环检测模块 (https://github.com/rpng/calc),目前这种方法是我找到的最轻量级且效果不错的…