spark代码写入hdfs错误】的更多相关文章

报错: org.apache.hadoop.security.AccessControlException: Permission denied: user=hgm, access=WRITE 其实就是当前window下hgm user没有hdfs的写权限   sudo -u hdfs hdfs dfs -chmod 777 / 或hdfs hdfs dfs -chmod 777 / 这样就给所有的用户加上了写的权限解决问题,当然仅仅限于自己开发学习时的情况   或者     org.apach…
转自:http://blog.csdn.net/wh_springer/article/details/51842496 近十年来,随着Hadoop生态系统的不断完善,Hadoop早已成为大数据事实上的行业标准之一.   1  Hive基本原理 Hadoop是一个流行的开源框架,用来存储和处理商用硬件上的大规模数据集.对于HDFS上的海量日志而言,编写Mapreduce程序代码对于类似数据仓库的需求来说总是显得相对于难以维护和重用,Hive作为一种基于Hadoop的数据仓库解决方案应运而生,并得…
原文链接:spark读取 kafka nginx网站日志消息 并写入HDFS中 spark 版本为1.0 kafka 版本为0.8 首先来看看kafka的架构图 详细了解请参考官方 我这边有三台机器用于kafka 日志收集的 A 192.168.1.1 为server B 192.168.1.2 为producer C 192.168.1.3 为consumer 首先在A上的kafka安装目录下执行如下命令 ./kafka-server-start.sh ../config/server.pro…
一. 概述 上一篇我们介绍了如何将数据从mysql抛到kafka,这次我们就专注于利用storm将数据写入到hdfs的过程,由于storm写入hdfs的可定制东西有些多,我们先不从kafka读取,而先自己定义一个Spout数据充当数据源,下章再进行整合.这里默认你是拥有一定的storm知识的基础,起码知道Spout和bolt是什么. 写入hdfs可以有以下的定制策略: 自定义写入文件的名字 定义写入内容格式 满足给定条件后更改写入的文件 更改写入文件时触发的Action 本篇会先说明如何用sto…
1.Java代码操作HDFS需要用到Jar包和Java类 Jar包: hadoop-common-2.6.0.jar和hadoop-hdfs-2.6.0.jar Java类: java.net.URLorg.apache.hadoop.fs.FsUrlStreamHandlerFactoryjava.net.URIorg.apache.hadoop.conf.Configurationorg.apache.hadoop.fs.FileSystemorg.apache.hadoop.fs.Path…
欢迎关注微信公众号:ApacheHudi,解锁下一代数据湖技术 1. 项目背景 传统数仓的组织架构是针对离线数据的OLAP(联机事务分析)需求设计的,常用的导入数据方式为采用sqoop或spark定时作业逐批将业务库数据导入数仓.随着数据分析对实时性要求的不断提高,按小时.甚至分钟级的数据同步越来越普遍.由此展开了基于spark/flink流处理机制的(准)实时同步系统的开发. 然而实时同步数仓从一开始就面临如下几个挑战: 小文件问题.不论是spark的microbatch模式,还是flink的…
场景:使用Spark Streaming接收HDFS上的文件数据与关系型数据库中的表进行相关的查询操作: 使用技术:Spark Streaming + Spark JDBC External DataSources   HDFS上文件的数据格式为:id.name.cityId,分隔符为tab  1 zhangsan 1 2 lisi 1 3 wangwu 2 4 zhaoliu 3 MySQL的表city结构为:id int, name varchar 1 bj 2 sz 3 sh 本案例的结果…
一. 概述 在大数据的静态数据处理中,目前普遍采用的是用Spark+Hdfs(Hive/Hbase)的技术架构来对数据进行处理. 但有时候有其他的需求,需要从其他不同数据源不间断得采集数据,然后存储到Hdfs中进行处理.而追加(append)这种操作在Hdfs里面明显是比较麻烦的一件事.所幸有了Storm这么个流数据处理这样的东西问世,可以帮我们解决这些问题. 不过光有Storm还不够,我们还需要其他中间件来协助我们,让所有其他数据源都归于一个通道.这样就能实现不同数据源以及Hhdfs之间的解耦…
转载自:http://bigdata.51cto.com/art/201704/536499.htm Spark程序运行常见错误解决方法以及优化 task倾斜原因比较多,网络io,cpu,mem都有可能造成这个节点上的任务执行缓慢,可以去看该节点的性能监控来分析原因.以前遇到过同事在spark的一台worker上跑R的任务导致该节点spark task运行缓慢. 作者:佚名来源:数据为王|2017-04-07 09:02   一.org.apache.spark.shuffle.FetchFai…
功能:通过spark sql 将hdfs 中文件导入到mongdo 所需jar包有:mongo-spark-connector_2.11-2.1.2.jar.mongo-java-driver-3.8.0.jar scala代码如下: ) { System.) } ) ) ) ) ) ) ).getOrCreate() import spark.implicits._ val df = spark.read.json(hdfsServer + logPath + "/" + fileN…