在线性回归算法中,我们看到,在training set中,输入矩阵X与向量y的值都是连续的.所以在二维空间中,我们可以用一条直线去模拟X与y的变化关系,寻找参数向量theta的取值.如根据房屋面积预测房价,根据日期.纬度来预测温度等等,我们称此类问题为回归(Regression). 而本文,我们开始研究另外一种情况下的机器学习,即y值的变化为不连续的(categorical).例如,y的取值只有0和1,我们用来表征类似:考试通过与否(pass/fail).比赛输赢(win/lose).是否患病(…
所需解决的问题是,训练一个Logistic Regression系统,使之能够识别手写体数字1-10,每张图片为20px*20px的灰度图.训练样例的输入X是5000行400列的一个矩阵,每一行存储一张图片(20^2=400),共5000个训练样例,而y则为手写体所表示的数字1-10. 利用Logistic Regression进行多分类应用,其基础是将问题本身化解为z个二分类问题,其中z为类别的个数.第一步,将向量m*1维y扩展为矩阵m*z维矩阵Y,向量n+1维向量theta扩展为矩阵z*(n…
逻辑回归算法LR. 简介 逻辑回归是机器学习从统计学领域借鉴的另一种技术.它是二进制分类问题的首选方法(有两个类值的问题).   Logistic回归就像线性回归,目标是找到权重每个输入变量的系数值. 与线性回归不同的是,对输出的预测用一个叫做logistic函数的非线性函数来进行转换. logistic函数看起来像一个大S,它将把任何值转换为0到1的范围.我们可以将一个规则应用到逻辑函数的输出中,将值的值设为0和1(例如,如果小于0.5,则输出1)并预测一个类值. 由于模型的学习方式,逻辑回归…
本文目录: 1. sigmoid function (logistic function) 2. 逻辑回归二分类模型 3. 神经网络做二分类问题 4. python实现神经网络做二分类问题 1. sigmoid unit  对于一个输入样本$X(x_1,x_2, ..., x_n)$,sigmoid单元先计算$x_1,x_2, ..., x_n$的线性组合: $z = {{\bf{w}}^T}{\bf{x}} = {w_1}{x_1} + {w_2}{x_2} + ... + {w_n}{x_n…
原文:http://blog.csdn.net/abcjennifer/article/details/7716281 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归.Octave Tutorial.Logistic Regression.Regularization.神经网络.机器学习系统设计.SVM(Support Vector Machines 支持向量机).聚类.降维.异常检测.大规模机器学习等章节.所有内容均来自Standford公开课machine…
logistic regression,这个算法只能解决简单的线性二分类,在众多的机器学习分类算法中并不出众,但它能被改进为多分类,并换了另外一个名字softmax, 这可是深度学习中响当当的分类算法. Reference: denny的学习专栏  // 臭味相投的一个博客 Xml保存图片的方法和读取的方式. Mat显示内部的多个图片. Mat::t() 显示矩阵内容. 本文用它来进行手写数字分类. 在opencv3.0中提供了一个xml文件,里面存放了40个样本,分别是20个数字0的手写体和2…
This is the 2nd part of the series. Read the first part here: Logistic Regression Vs Decision Trees Vs SVM: Part I In this part we’ll discuss how to choose between Logistic Regression , Decision Trees and Support Vector Machines. The most correct ans…
Logistic regression is a method for classifying data into discrete outcomes. For example, we might use logistic regression to classify an email as spam or not spam. In this module, we introduce the notion of classification, the cost function for logi…
此笔记源于台湾大学林轩田老师<机器学习基石><机器学习技法> (一)Logistic Regression 原理 对于分类问题,假设我们想得到的结果不是(x属于某一类)这种形式,而是(x属于某一类的概率是多少)这种形式. 因为s的范围是(-∞,+∞), 而概率的范围是[0,1],所以我们需要一个映射函数: 我们如何应用概率知识来解决这一问题呢?一种想法是使用极大似然法. 现在出现了类似于linear Regression中的形式,我们可以求梯度. 根据上式,并不能得出向量w的clo…
logistic regression,这个算法只能解决简单的线性二分类,在众多的机器学习分类算法中并不出众,但它能被改进为多分类,并换了另外一个名字softmax, 这可是深度学习中响当当的分类算法. Reference: denny的学习专栏  // 臭味相投的一个博客 Xml保存图片的方法和读取的方式. Mat显示内部的多个图片. Mat::t() 显示矩阵内容. 本文用它来进行手写数字分类. 在opencv3.0中提供了一个xml文件,里面存放了40个样本,分别是20个数字0的手写体和2…