这里用Venn diagram来不严谨地推导一下贝叶斯定理. 假设A和B为两个不相互独立的事件. 交集(intersection):  上图红色部分即为事件A和事件B的交集. 并集(union):  由Venn diagram可以看出,在事件B已经发生的情况下,事件A发生的概率为事件A和事件B的交集除以事件B: 同理,在事件A已经发生的情况下,事件B发生的概率为事件A和事件B的交集除以事件A: 注:表示 A,B 事件同时发生的概率,如果 A 和 B 是相互独立的两个事件,那么:. 由上面的公式可…
title: [概率论]2-3:贝叶斯定理(Bayes' Theorem) categories: Mathematic Probability keywords: Bayes' Theorem 贝叶斯公式 Law of total Probability 全概率公式 toc: true date: 2018-02-02 10:10:45 Abstract: 本文是关于Bayes' Theorem 的介绍性知识 Keywords: Bayes' Theorem,Law of total Prob…
2019年08月31日更新 看了一篇发在NM上的文章才又明白了贝叶斯方法的重要性和普适性,结合目前最火的DL,会有意想不到的结果. 目前一些最直觉性的理解: 概率的核心就是可能性空间一定,三体世界不会有概率 贝叶斯的基础就是条件概率,条件概率的核心就是可能性空间的缩小,获取了新的信息就是个可能性空间缩小的过程 贝叶斯定理的核心就是,先验*似然=后验,有张图可以完美可视化这个定理 只要我们能得到可靠的先验或似然,任意一个,我们就能得到更可靠的后验概率 最近又在刷一个Coursera的课程:Baye…
Bayes' Theorem定理的原理说明,三个简单的例子来说明用法及一些练习. Bayes' Theorem就是概率问题,论文相对比较好理解,也不必做什么笔记.…
前言 AI时代的到来一下子让人感觉到数学知识有些捉襟见肘,为了不被这个时代淘汰,我们需要不断的学习再学习.其中最常见的就是贝叶斯定理,这个定理最早由托马斯·贝叶斯提出. 贝叶斯方法的诞生源于他生前为解决一个“逆向概率”问题写的一篇文章,而这篇文章是在他死后才由他的一位朋友发表出来的.在贝叶斯写这篇论文之前,人们已经能够计算“正向概率”,如“袋子里N个白球,M个黑球,随机抓一个,抓到白球的概率”.而随之而来的另一个反过来的问题就是 “如果我们事先并不知道袋子里面黑白球的比例,而是闭着眼睛摸出一个(…
Naive Bayes Theorm And Application - Theorem Naive Bayes model: 1. Naive Bayes model 2. model: discrete attributes with finit number of values 2. Parameter density estimation 3. Naive Bayes classification algorithm 4. AutoClass clustering alogrithm \…
什么是模式识别(Pattern Recognition)? 按照Bishop的定义,模式识别就是用机器学习的算法从数据中挖掘出有用的pattern. 人们很早就开始学习如何从大量的数据中发现隐藏在背后的pattern.例如,16世纪的Kepler从他的老师Tycho搜集的大量有关于行星运动的数据中发现了天体运行的规律,并直接导致了牛顿经典力学的诞生.然而,这种依赖于人类经验的.启发式的模式识别过程很难复制到其他的领域中.例如手写数字的识别.这就需要机器学习的技术了.(顺便提一下,开普勒定律在物理…
对于分类问题,我们每个人每天都在执行分类操作,只是我们没有意识到罢了.例如,当你看到一个陌生人,你的脑子下意识判断TA是男是女:你可能经常会走在路上对身旁的朋友说“这个人一看就很有钱.那边有个非主流”之类的话,其实这就是一种分类操作.为更好理解Bayes原理,转载参考下面的文章: ① http://www.ruanyifeng.com/blog/2011/08/bayesian_inference_part_one.html ② http://www.cnblogs.com/leoo2sk/ar…
有一枚硬币(不知道它是否公平),假如抛了三次,三次都是“花”: 能够说明它两面都是“花”吗? 1 贝叶斯推断 按照传统的算法,抛了三次得到三次“花”,那么“花”的概率应该是: 但是抛三次实在太少了,完全有可能是运气问题.我们应该怎么办? 托马斯·贝叶斯(1702-1761),18世纪英国数学家,1742年成为英国皇家学会会员. 贝叶斯认为在实验之前,应根据不同的情况对硬币有所假设.不同的假设会得到不同的推断. 比如和滑不溜手的韦小宝玩.韦小宝可能拿出各种做过手脚的硬币,让我们猜不透,只能假设对硬…
Common sense reduced to computation - Pierre-Simon, marquis de Laplace (1749–1827) Inventor of Bayesian inference 贝叶斯方法的逻辑十分接近人脑的思维:人脑的优势不是计算,在纯数值计算方面,可以说几十年前的计算器就已经超过人脑了. 人脑的核心能力在于推理,而记忆在推理中扮演了重要的角色,我们都是基于已知的常识来做出推理.贝叶斯推断也是如此,先验就是常识,在我们有了新的观测数据后,就可以…