(hive)hive优化(转载)】的更多相关文章

1.概述 继续<那些年使用Hive踩过的坑>一文中的剩余部分,本篇博客赘述了在工作中总结Hive的常用优化手段和在工作中使用Hive出现的问题.下面开始本篇文章的优化介绍. 2.介绍 首先,我们来看看Hadoop的计算框架特性,在此特性下会衍生哪些问题? 数据量大不是问题,数据倾斜是个问题. jobs数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联多次汇总,产生十几个jobs,耗时很长.原因是map reduce作业初始化的时间是比较长的. sum,count,max,mi…
一.前述 本节主要描述Hive的优化使用,Hive的优化着重强调一个 把Hive SQL 当做Mapreduce程序去优化 二.主要优化点 1.Hive运行方式:本地模式集群模式 本地模式开启本地模式:set hive.exec.mode.local.auto=true;注意:hive.exec.mode.local.auto.inputbytes.max默认值为128M表示加载文件的最大值,若大于该配置仍会以集群方式来运行! 对于小表可以直接从从hdfs直接拿到本地计算 2.并行计算通过设置以…
https://blog.csdn.net/mrlevo520/article/details/76339075 1.介绍 首先,我们来看看Hadoop的计算框架特性,在此特性下会衍生哪些问题? 数据量大不是问题,数据倾斜是个问题. jobs数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联多次汇总,产生十几个jobs,耗时很长.原因是map reduce作业初始化的时间是比较长的. sum,count,max,min等UDAF,不怕数据倾斜问题,hadoop在map端的汇总合…
首先hive本质就是mapreduce,那么优化就从mapreduce开始入手. 然而mapreduce的执行快慢又和map和reduce的个数有关,所以我们先从这里下手,调整并发度. 关于map的优化: 1.调整block 作业会通过input的目录产生一个或者多个map任务.set dfs.block.size 因为没份数据都是block,而block的大小直接影响了split切分的分数,如果切分的更细一点,那么split个数会增加,那直接会影响map的增加,所以blocksize是直接影响…
常用调优测试语句 :    ①显示当前hive环境的参数值: set 参数名; 如:   hive> set mapred.map.tasks;mapred.map.tasks;   ②设置hive当前环境的参数值,但仅对本次连接有效 set 参数名 = 值; 如: hive> set mapred.map.tasks;mapred.map.tasks=2;   ④查看当前hive环境的所有参数值: set -v; ⑤重置当前hive环境的所有参数值: reset;     hive job优…
1.介绍 首先,我们来看看Hadoop的计算框架特性,在此特性下会衍生哪些问题? 数据量大不是问题,数据倾斜是个问题. jobs数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联多次汇总,产生十几个jobs,耗时很长.原因是map reduce作业初始化的时间是比较长的. sum,count,max,min等UDAF,不怕数据倾斜问题,hadoop在map端的汇总合并优化,使数据倾斜不成问题. count(distinct ),在数据量大的情况下,效率较低,如果是多count(…
Hive优化目标 在有限的资源下,执行效率更高 常见问题: 数据倾斜 map数设置 reduce数设置 其他 Hive执行 HQL --> Job --> Map/Reduce 执行计划 explain [extended] hql 样例 select col,count(1) from test2 group by col; explain select col,count(1) from test2 group by col; Hive表优化 分区 set hive.exec.dynami…
Hive的优化主要分为:配置优化.SQL语句优化.任务优化等方案.其中在开发过程中主要涉及到的可能是SQL优化这块. 优化的核心思想是: 减少数据量(例如分区.列剪裁) 避免数据倾斜(例如加参数.Key打散) 避免全表扫描(例如on添加加上分区等) 减少job数(例如相同的on条件的join放在一起作为一个任务) HQL语句优化 1. 使用分区剪裁.列剪裁 在分区剪裁中,当使用外关联时,如果将副表的过滤条件写在Where后面,那么就会先全表关联,之后再过滤. select a.* from a…
hive中参数分为三类,第一种system环境变量信息,是系统环境变量信息:第二种是env环境变量信息,是当前用户环境变量信息:第三种是hive参数变量信息,是由hive-site.xml文件定义的以及当前hive会话定义的环境变量信息.其中第三种hive参数变量信息中又由hadoop hdfs参数(直接是hadoop的).mapreduce参数.metastore元数据存储参数.metastore连接参数以及hive运行参数构成. Hive-0.13.1-cdh5.3.6参数变量信息详解 参数…
[Spark][Hive]Hive的命令行客户端启动: [training@localhost Desktop]$ chkconfig | grep hive hive-metastore 0:off 1:off 2:off 3:on 4:on 5:on 6:offhive-server2 0:off 1:off 2:off 3:on 4:on 5:on 6:off [training@localhost Desktop]$ service hive-server2 statusHive Ser…