首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
3.28 省选模拟赛 染色 LCT+线段树
】的更多相关文章
3.28 省选模拟赛 染色 LCT+线段树
发现和SDOI2017树点涂色差不多 但是当时这道题模拟赛的时候不会写 赛后也没及时订正 所以这场模拟赛的这道题虽然秒想到了LCT和线段树但是最终还是只是打了暴力. 痛定思痛 还是要把这道题给补了. 但是对于这道题来说 暴力还是有价值的. 考虑20分 每次暴力dfs. 考虑对于树是随机生成的 那么期望高度为logn 我们发现每次修改只用修改到1 也就是说每次暴力修改颜色的话只需要logn的时间复杂度. 考虑如何动态维护子树内的值 考虑修改一个点的颜色 子树内之前和它颜色一样的点 显然子树内部整体…
4.11 省选模拟赛 序列 二分 线段树优化dp set优化dp 缩点
容易想到二分. 看到第一个条件容易想到缩点. 第二个条件自然是分段 然后让总和最小 容易想到dp. 缩点为先:我是采用了取了一个前缀最小值数组 二分+并查集缩点 当然也是可以直接采用 其他的奇奇怪怪的做法. 二分为重 发现变成了dp使得总a值尽可能小的问题. 方程为 f[i]=min(f[j]+max(j+1~i)a[k]); 这个问题容易使用线段树优化dp来解决. 单调栈维护决策区间修改即可.不过被卡常了 只有90points const int MAXN=100010; ll n,m,top…
6.18 省选模拟赛 字符串 LCT SAM
LINK:字符串 看起来很难做 考虑一种暴力 建立SAM后每次查询暴力扫儿子. 期望得分10分.实际得分10分. 另外一种发现每次扫儿子过于暴力 可以每次儿子向上做贡献 每次都暴力向上跳. 期望得分10分.实际得分100分. 由此可以发现玄学的暴力非常的强大 可能这就是所谓的暴力出奇迹吧. 考虑离线:这样就可以把SAM给建出来了 进一步的 每次询问是查询子树和. 每次修改是单点修改 可以利用线段树维护dfs序就做完了. 不过其中存在细节 分裂的节点是影响答案的统计的. 怎么处理分裂的节点?注意到…
6.3 省选模拟赛 Decompose 动态dp 树链剖分 set
LINK:Decompose 看起来很难 实际上也很难 考验选手的dp 树链剖分 矩阵乘法的能力. 容易列出dp方程 暴力dp 期望得分28. 对于链的情况 容易发现dp方程可以转矩阵乘法 然后利用线段树维护矩阵即可. 这个矩阵很容易列出这里不再赘述. 对于100分 容易想到动态dp模型 LCT写动态dp是万万不能的. 而且这道题的dp方程和其他儿子也有些关系. 考虑树链剖分 然后分别计算轻儿子和重儿子的贡献. 让重儿子利用矩阵来进行转移 轻儿子当做常数. 这样每次修改的时候 修改的节点最多只有…
【BZOJ 2957】楼房重建&&Codechef COT5 Count on a Treap&&【NOIP模拟赛】Weed 线段树的分治维护
线段树是一种作用于静态区间上的数据结构,可以高效查询连续区间和单点,类似于一种静态的分治.他最迷人的地方在于“lazy标记”,对于lazy标记一般随我们从父区间进入子区间而下传,最终给到叶子节点,但还有一种做法就是对于作用域一整个区间的标记,就将其放置在此区间节点,查询时再结算其贡献,但无论怎样我们都要保证我们查询到的区间信息的真实性完整性,这就意味着我们接触一个区间若要了解到他的全部有用信息,并不用进入其下层区间(以上两种标记方式往往再结合出现时有巧妙的用处).于是我们必须高效地合并子区间的信…
【Foreign】染色 [LCT][线段树]
染色 Time Limit: 20 Sec Memory Limit: 256 MB Description Input Output Sample Input 13 0 1 0 2 1 11 1 10 1 9 9 12 2 5 5 8 2 4 2 3 4 6 4 7 7 q 0 O 4 q 6 q 2 O 9 q 9 q 2 Sample Output 2.0000000000 1.0000000000 0.8571428571 0.5000000000 1.8571428571 HINT…
4.17 省选模拟赛 远行 LCT 启发式合并 倍增
容易写出nQ的暴力 由于数据是期望的时间 所以直接dfs可以跑的很快 可以拿到70分. 当然 可以进一步优化暴力 使用换根dp 然后可以将暴力优化到n^2. const int MAXN=300010; int n,Q,T,len,maxx; int lin[MAXN],d[MAXN],ver[MAXN<<1],nex[MAXN<<1]; inline void add(int x,int y) { ver[++len]=y; nex[len]=lin[x]; lin[x]=len…
4.28 省选模拟赛 负环 倍增 矩阵乘法 dp
容易想到 这个环一定是简单环. 考虑如果是复杂环 那么显然对于其中的第一个简单环来说 要么其权值为负 如果为正没必要走一圈 走一部分即可. 对于前者 显然可以找到更小的 对于第二部分是递归定义的. 综上 这个环是一个简单环. 那么最多有n个点. 考虑枚举起点 然后 设f[i][j][k]表示从i到j经过k条边的最短路. 容易发现最终的答案为 f[i][i][w]<0 w. 不过这样做是n^4的. 考虑优化 容易想到二分 而上述状态其实本质上是一个矩阵乘法. 那么我们可以矩阵乘法在n^3logn的…
4.28 省选模拟赛模拟赛 最佳农场 二维卷积 NTT
第一次遇到二维卷积 不太清楚是怎么做的. 40分暴力比对即可. 对于行为或者列为1时 容易想到NTT做快速匹配.然后找答案即可. 考虑这是一个二维的比对过程. 设\(f_{i,j}\)表示以i,j为右下角的答案. 那么我们把询问矩阵给上下翻转 左右翻转.设初始矩阵为a 询问矩阵为b 且询问矩阵大小为x,y. 那么显然有 \(f_{i,j}=\sum_{l=1}^x\sum_{r=1}^y[b_{l,r}==a_{i-l+1,j-r+1}]\) 这是一个二维卷积的形式 还是考虑转换成一维卷积的形式…
4.12 省选模拟赛 LCA on tree 树链剖分 树状数组 分析答案变化量
LINK:duoxiao OJ LCA on Tree 题目: 一道树链剖分+树状数组的神题. (直接nQ的暴力有50. 其实对于树随机的时候不难想到一个算法 对于x的修改 暴力修改到根. 对于儿子的答案维护 不难发现维护几个变量值即可 这样做每次是Qh的复杂度 在树随机时为logn 考虑正解: 难点还是在于修改 先把起始的答案求出来. 对于修改x x的某个孙子w答案的变化显然是 (sz[w]+1)v. 对于x的某个儿子 s来说 答案的变化为 (sz[s]+1)v+\(v\cdot \sum_{…