structured sparsity model】的更多相关文章

Data representation往往基于如下最小化问题:         (1) 其中X是观测到的数据的特征矩阵,D是字典,Z是字典上的描述.约束项和使得字典dictionary和描述code具有一定结构性.当D给定时,确定Z的过程叫做representation persuit.当D和Z同时未知时,确定D就是dictionary learning的问题. 稀疏表示,通常对Z做约束,使得Z中的每一列只能取少量的非0系数.其中最简单的约束项就是        (2) 这时问题就变成了LASS…
This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinci 10:30  ARS-L1.1—GROUP STRUCTURED DIRTY DICTIONARY LEARNING FOR CLASSIFICATION Yuanming Suo, Minh Dao, Trac Tran, Johns Hopkins University, USA; Hojj…
Paper about Event Detection. #@author: gr #@date: 2014-03-15 #@email: forgerui@gmail.com 看一些相关的论文. 1. <Efficient Visual Event Detection using Volumetric Features> ICCV 2005 扩展2D box 特征到3D时空特征. 构建一个实时的检测器基于容积特征. 采用传统的兴趣点方法检测事件. 2. <ARMA-HMM: A New…
Survey Recent Advances in Efficient Computation of Deep Convolutional Neural Networks, [arxiv '18] A Survey of Model Compression and Acceleration for Deep Neural Networks [arXiv '17] Quantization The ZipML Framework for Training Models with End-to-En…
1. 前言 多任务学习(Multi-task learning)是和单任务学习(single-task learning)相对的一种机器学习方法.在机器学习领域,标准的算法理论是一次学习一个任务,也就是系统的输出为实数的情况.复杂的学习问题先被分解成理论上独立的子问题,然后分别对每个子问题进行学习,最后通过对子问题学习结果的组合建立复杂问题的数学模型.多任务学习是一种联合学习,多个任务并行学习,结果相互影响. 拿大家经常使用的school data做个简单的对比,school data是用来预测…
1. Parameter pruning and sharing 1.1 Quantization and Binarization Compressing deep convolutional networks using vector quantization Quantized convolutional neural networks for mobile devices Improving the speed of neural networks on cpus Deep learni…
Convolutional Neural Networks ImageNet Models Architecture Design Activation Functions Visualization Fast Convolution Low-Rank Filter Approximation Low Precision Parameter Pruning Transfer Learning Theory 3D Data Hardware ImageNet Models 2017 CVPR Xc…
Accepted Papers     Title Primary Subject Area ID 3D computer vision 93 UPnP: An optimal O(n) solution to the absolute pose problem with universal applicability 128 Video Registration to SfM Models 168 Image-based 4-d Modeling Using 3-d Change Detect…
2015年~2017年SIGIR,SIGKDD,ICML三大会议的Recsys论文: [转载请注明出处:https://www.cnblogs.com/shenxiaolin/p/8321722.html] SIGIR-2015 [Title]WEMAREC: Accurate and Scalable Recommendation through Weighted and Ensemble Matrix Approximation [Abstract]Matrix approximation…
记录下,有空研究. http://nlp.stanford.edu/projects/DeepLearningInNaturalLanguageProcessing.shtml http://nlp.stanford.edu/courses/NAACL2013/ Fast and Robust Neural Network Joint Models for Statistical Machine Translation ACL2014的论文列表 http://blog.sina.com.cn/s…