半个月前看到博客园有人说.NET不行那篇文章,我只想说你们有时间去抱怨不如多写些实在的东西.  1.SQLSERVER优点和缺点? 优点:支持索引.事务.安全性以及容错性高 缺点:数据量达到100万以上就需要开始优化了,一般我们会对 表进行水平拆分,分表.分区和作业同步等,这样做大大提高了逻辑的复杂性,难以维护,只有群集容错,没有多库负载均衡并行计算功能.  2.SQLSERVER真的不能处理大数据? 答案:当然可以的,打个比方:操作单一数据库称为一维操作,如果操作相同结构,分布在多个服务器上的…
作者 王枫发布于2014年2月19日 综述 随着越来越多的组织的数据从GB.TB级迈向PB级,标志着整个社会的信息化水平正在迈入新的时代 – 大数据时代.对海量数据的处理.分析能力,日益成为组织在这个时代决胜未来的关键因素,而基于大数据的应用,也在潜移默化地渗透到社会的方方面面,影响到每一个人的日常生活,人们日常生活中看到的电视节目.浏览的网页.接收到的广告,都将是基于大数据分析之后提供的有针对性的内容. 微软在大数据领域的战略重点,在于更好地帮助客户"消费"大数据,让所有的用户都能够…
综述 随着越来越多的组织的数据从GB.TB级迈向PB级,标志着整个社会的信息化水平正在迈入新的时代 – 大数据时代.对海量数据的处理.分析能力,日益成为组织在这个时代决胜未来的关键因素,而基于大数据的应用,也在潜移默化地渗透到社会的方方面面,影响到每一个人的日常生活,人们日常生活中看到的电视节目.浏览的网页.接收到的广告,都将是基于大数据分析之后提供的有针对性的内容. 微软在大数据领域的战略重点,在于更好地帮助客户“消费”大数据,让所有的用户都能够从几乎任何规模任何类型的任何数据当中获得可以转化…
原文出处: http://www.searchdatabase.com.cn/showcontent_88247.htm 以下是部分节选: 最新发布的大数据创新成果包括: Oracle Big Data Discovery是 “可视化的Hadoop”,也是面向大数据洞察的,集发现.探索.转变.挖掘和分享为一体的端到端产品.大数据资产将被企业内更多的业务分析师利用,帮助减少风险并加速大数据项目的价值转化. Oracle GoldenGate for Big Data是一个基于Hadoop技术的产品…
Spark介绍 按照官方的定义,Spark 是一个通用,快速,适用于大规模数据的处理引擎. 通用性:我们可以使用Spark SQL来执行常规分析, Spark Streaming 来流数据处理, 以及用Mlib来执行机器学习等.Java,python,scala及R语言的支持也是其通用性的表现之一. 快速: 这个可能是Spark成功的最初原因之一,主要归功于其基于内存的运算方式.当需要处理的数据需要反复迭代时,Spark可以直接在内存中暂存数据,而无需像Map Reduce一样需要把数据写回磁盘…
一篇了解大数据架构及Hadoop生态圈 阅读建议,有一定基础的阅读顺序为1,2,3,4节,没有基础的阅读顺序为2,3,4,1节. 第一节 集群规划 大数据集群规划(以CDH集群为例),参考链接: https://www.cloudera.com/documentation/enterprise/latest/topics/cm_ig_host_allocations.html https://blog.csdn.net/xuefenxi/article/details/81563033 Clou…
——把数据从分散统一集中到数据中心 基于HP分布式并行计算/存储技术构建的云监控系统即是通过“云高清摄像机”及IaaS和PaaS监控系统平台,根据用户所需(SaaS)将多路监控数据流传送给“云端”,除了提供传统的监控服务外,还提供了对PB级大数据的高性能IO并发集中存储.查询和分析等数据应用服务,从而可以实现更高的非结构化数据管理,解决了监控系统中对于大数据安全.分析和备份等问题,用户也可以通过任意方式,任意终端按需实现对视频监控的需要. 数据驱动手段在一定程度上帮助了监管部门提高了工作效率.传…
大数据时代之hadoop(一):hadoop安装 大数据时代之hadoop(二):hadoop脚本解析 大数据时代之hadoop(三):hadoop数据流(生命周期) 大数据时代之hadoop(四):hadoop 分布式文件系统(HDFS) hadoop的核心分为两块,一是分布式存储系统-hdfs,这个我已经在上一章节大致讲了一下,还有一个就是hadoop的计算框架-mapreduce. mapreduce事实上就是一个移动式的基于key-value形式的分布式计算框架. 其计算分为两个阶段,m…
大数据测试之初识Hadoop POPTEST老李认为测试开发工程师是面向测试的开发,也就是说,写代码就是为完成测试任务服务的,写自动化测试(性能自动化,功能自动化,安全自动化,接口自动化等等)的case或者开发测试工具完成不同类型的测试.其实自动化测试涉及面非常之广,目前来讲,case基本都可以写成自动化,而性能测试的脚本开发要围绕业务和协议特点来完成开发,并测试完成后依靠软件分析工具对被测试系统进行评估测试. 未来的技术趋势是云测试,大数据测试,安全性测试,这些要完成测试都需要自动化来完成,而…
大数据技术的应用正在潜移默化改变着我们的日常生活习惯和工作方式,很多看起来有点“不可思议”的事情也渐渐被我们“习以为常”.大数据可能在国内的起步较晚,但我们可能却是对大数据应用最好的了代表了.前些时候有分享了一个大数据技术在智慧人社上面的应用案例,最近也一直看一些人力资源方面大数据解决方案的案例,比较集中的都是围绕智慧人社的. 智慧人社建设也是近几年大数据技术的重点应用方向之一,15年国务院印发的<促进大数据发展行动纲要>中就明确,通过建立“用数据说话.用数据决策.用数据管理.用数据创新”的管…
from: 互联网+大数据解决方案(ppt) 导读:大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取.管理.处理.并整理成为帮助企业经营决策更积极目的的资讯. 大数据的4V特点: Volume.Velocity. Variety.Veracity. 结束语: 从所周知,大数据已经不简简单单是数据大的事实了,而最重要的现实是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息. 那么越来越多的应用涉及到大数据,而…
8月27日,华为云重磅发布了业界首个鲲鹏大数据解决方案--BigData Pro.该方案采用基于公有云的存储与计算分离架构,以可无限弹性扩容的鲲鹏算力作为计算资源,以支持原生多协议的OBS对象存储服务为统一的存储数据湖,提供"存算分离.极致弹性.极致高效"的全新公有云大数据解决方案,大幅提升了大数据集群的资源利用率,大数据成本最高可降低50%. 你想知道BigData Pro为什么这么厉害么?请看世界名画们的主角 当一个神秘大V是一种什么体验?到底是走上人生颠覆还是被问题缠身? &qu…
随着云计算.大数据迅速发展,亟需用hadoop解决大数据量高并发访问的瓶颈.谷歌.淘宝.百度.京东等底层都应用hadoop.越来越多的企 业急需引入hadoop技术人才.由于掌握Hadoop技术的开发人员并不多,直接导致了这几年hadoop技术的薪水远高于JavaEE及 Android程序员. Hadoop入门薪资已经达到了 8K 以上,工作1年可达到 1.2W 以上,具有2-3年工作经验的hadoop人才年薪可以达到 30万—50万 . 一般需要大数据处理的公司基本上都是大公司,所以学习had…
介绍 此Refcard提供了Apache Hadoop,这是最流行的软件框架,可使用简单的高级编程模型实现大型数据集的分布式存储和处理.我们将介绍Hadoop最重要的概念,描述其架构,指导您如何开始使用它以及在Hadoop上编写和执行各种应用程序. 简而言之,Hadoop是Apache Software Foundation的一个开源项目,可以安装在服务器集群上,以便这些服务器可以通信并协同工作来存储和处理大型数据集.Hadoop近年来因其有效处理大数据的能力而变得非常成功.它允许公司将所有数据…
Hadoop编程实战——Mapreduce基本功能实现 此篇博客承接上一篇总结的HDFS编程实战,将会详细地对mapreduce的各种数据分析功能进行一个整理,由于实际工作中并不会过多地涉及原理,因此,掌握好mapreduce框架将会有助于了解sql语句在大数据场景下的底层实现原理,从而能够帮助开发人员优化sql语句,提高查询速度,废话不多说,现在正式开始吧! 1. Mapreduce入门——word count实现 一个基本的mapreduce程序一般要写三个类,Mapper类,Reducer…
因为项目日志体量较大,每天有4-7T的日志量,传统的sqlserver已经不能满足,所以现在需要使用到大数据的相关工具进行记录和使用. 虽然公共项目提供了组件和解决方案,但是对于一些名词.概念还是有必要学习一下. Hadoop历史 雏形开始于2002年的Apache的Nutch,Nutch是一个开源Java 实现的搜索引擎.它提供了我们运行自己的搜索引擎所需的全部工具.包括全文搜索和Web爬虫. 随后在2003年Google发表了一篇技术学术论文谷歌文件系统(GFS).GFS也就是google…
  第1章 大数据概论 1.1 大数据概念 大数据概念如图2-1 所示. 图2-1 大数据概念 1.2 大数据特点(4V) 大数据特点如图2-2,2-3,2-4,2-5所示 图2-2 大数据特点之大量 图2-3 大数据特点之高速 图2-4 大数据特点之多样 图2-5 大数据特点之低价值密度 1.3 大数据应用场景 大数据应用场景如图2-6,2-7,2-8,2-9,2-10,2-11所示 图2-6 大数据应用场景之物流仓储 图2-7 大数据应用场景之零售 图2-8 大数据应用场景之旅游 图2-9…
本文会简述大数据分析场景需要解决的技术挑战,讨论目前主流大数据架构模式及其发展.最后我们将介绍如何结合云上存储.计算组件,实现更优的通用大数据架构模式,以及该模式可以涵盖的典型数据处理场景. 大数据处理的挑战 现在已经有越来越多的行业和技术领域需求大数据分析系统,例如金融行业需要使用大数据系统结合VaR(value at risk)或者机器学习方案进行信贷风控,零售.餐饮行业需要大数据系统实现辅助销售决策,各种IOT场景需要大数据系统持续聚合和分析时序数据,各大科技公司需要建立大数据分析中台等等…
前言 之前工作中,有接触到大数据的需求,虽然当时我们体系有专门的大数据部门,但是由于当时我们中台重构,整个体系的开发量巨大,共用一个大数据部门,人手已经忙不过来,没法办,为了赶时间,我自己负责的系统的大数据相关操作,由我们自己承担了.此前对大数据的知识了解的很少,于是晚上回去花时间突击大数据知识,白天就开始上手干,一边学一边做,总算在部门规定的时间,跟系统一起上线了.后来的维护迭代就交给大数据去了,虽然接触大数据的时间不长,但是对我来说,确是很有意思的一段经历,觉得把当时匆匆学的知识点,再仔细回…
摘要:由于目标和现实的错位,对很多用户来讲,Hadoop成了一个在技术.应用和成本上都很沉重的产品. 本文分享自华为云社区<Hadoop Spark太重,esProc SPL很轻>,作者:石臻臻的杂货铺. 随着大数据时代的来临,数据量不断增长,传统小机上跑数据库的模式扩容困难且成本高昂,难以支撑业务发展.很多用户开始转向分布式计算路线,用多台廉价的PC服务器组成集群来完成大数据计算任务.Hadoop/Spark就是其中重要的软件技术,由于开源免费而广受欢迎.经过多年的应用和发展,Hadoop已…
Hadoop 起源于Google Lab开发的Google File System (GFS)存储系统和MapReduce数据处理框架.2008年,Hadoop成了Apache上的顶级项目,发展到今天,Hadoop已经成了主流的大数据处理平台,与Spark.HBase.Hive.Zookeeper等项目一同构成了大数据分析和处理的生态系统.Hadoop是一个由超过60个子系统构成的系统集合.实际使用的时候,企业通过定制Hadoop生态系统(即选择相应的子系统)完成其实际大数据管理需求.Hadoo…
前言: 好吧我承认已经有四年多没有更新博客了.... 在这四年中发生了很多事情,换了工作,换了工作的方向.在工作的第一年的时候接触机器学习,从那之后的一年非常狂热的学习机器学习的相关技术,也写了一些自己的理解和感悟.今天大概看了一下这个博客的总体阅读人数已经有70多万了,印象中之前还只有十多二十万.很高兴这些文章能够帮助你更好的理解一些机器学习相关的基础知识,非常感谢各位读者和爬虫机器人(:-p)的支持! 后来个人选择将工作的方向从机器学习换到了Hadoop相关领域,中间有很多感悟我想之后再单独…
Spark与Hadoop对比 什么是Spark Spark是UC Berkeley AMP lab所开源的类Hadoop MapReduce的通用的并行计算框架,Spark基于map reduce算法实现的分布式计算,拥有Hadoop MapReduce所具有的优点:但不同于MapReduce的是Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的map reduce的算法.其架构如下图所示: Spark与Hadoop对比 S…
要想搞清楚spark跟Hadoop到底谁更厉害,首先得明白spark到底是什么鬼. 经过之前的介绍大家应该非常了解什么是Hadoop了(不了解的点击这里:白话大数据 | hadoop究竟是什么鬼),简单的说:Hadoop是由HDFS分布式文件系统和MapReduce编程模型等部分组成的分布式系统架构. 而Spark呢,更像是Hadoop MapReduce这样的编程模型. 其实要讲清楚Spark,内存和磁盘这两个概念是必须要弄清楚的,相信在座的老爷太太们都懂,我还是简单说一下吧.内存和磁盘两者都…
转自:https://www.cnblogs.com/reed/p/7730338.html 今天做题,其中一道是 请简要描述一下Hadoop, Spark, MPI三种计算框架的特点以及分别适用于什么样的场景. 一直想对这些大数据计算框架总结一下,只可惜太懒,一直拖着.今天就借这个机会好好学习一下. 一张表 名称 发起者 语言 简介 特点 适用场景 Hadoop Yahoo工程师,Apache基金会 Java MapReduce分布式计算框架+HDFS分布式文件系统(GFS)+HBase数据存…
* 面试答案为LZ所写,如需转载请注明出处,谢谢. * 这里不涉及HiveSQL和HBase操作的笔试题,这些东西另有总结. 1.MR意义. MR是一个用于处理大数据的分布式离线计算框架,它采用”分而治之“的思想. 在分布式计算中,将分布式存储.分布式计算.负载均衡等复杂问题高度抽象成map和reduce两个过程. MR存在的意义在于它使得计算更廉价,大规模数据计算不再需要高级商用机器. 其次是这个软件的现成实现可以把程序员的精力集中在业务开发上,节省开发时间. 2.简述MR过程. MapRed…
Hadoop是一个开源框架,它允许在整个集群使用简单编程模型计算机的分布式环境存储并处理大数据.它的目的是从单一的服务器到上千台机器的扩展,每一个台机都可以提供本地计算和存储. “90%的世界数据在过去的几年中产生”. 由于新技术,设备和类似的社交网站通信装置的出现,人类产生的数据量每年都在迅速增长.美国从一开始的时候到2003年产生的数据量为5十亿千兆字节.如果以堆放的数据磁盘的形式,它可以填补整个足球场.在2011年创建相同数据量只需要两天,在2013年该速率仍在每十分钟极大地增长.虽然生产…
hadoop是一个由Apache基金会所发布的用于大规模集群上的分布式系统并行编程基础框架.目前已经是大数据领域最流行的开发架构.并且已经从HDFS.MapReduce.Hbase三大核心组件成长为一个具有60多个组件构成的庞大生态,可以满足大数据采集.存储.开发.分析.算法.建模等方方面面. 在hadoop的使用版本中,目前除Apache的版本,hadoop还有Cloudera与Hortonworks公司的两大发行版,并且两家公司还有各自的开分的相关生态组件.管理工具.便于Hadoop集群的供…
环境 服务器:ubuntu-16.04.3-desktop-amd64.iso 创建hadoop用户 sudo useradd -m hadoop -s /bin/bash 本文中会大量使用到sudo命令.sudo是ubuntu中一种权限管理机制,管理员可以授权给一些普通用户去执行一些需要root权限执行的操作.当使用sudo命令时,就需要输入您当前用户的密码. sudo passwd hadoop 接着使用如下命令设置密码,可简单设置为 hadoop,按提示输入两次密码 sudo adduse…
什么是大数据?进入本世纪以来,尤其是2010年之后,随着互联网特别是移动互联网的发展,数据的增长呈爆炸趋势,已经很难估计全世界的电子设备中存储的数据到底有多少,描述数据系统的数据量的计量单位从MB(1MB大约等于一百万字节).GB(1024MB).TB(1024GB),一直向上攀升,目前,PB(等于1024TB)级的数据系统已经很常见,随着移动个人数据.社交网站.科学计算.证券交易.网站日志.传感器网络数据量的不断加大,国内拥有的总数据量早已超出 ZB(1ZB=1024EB,1EB=1024PB…