NVIDIA GPU 计算能力】的更多相关文章

Tesla V100# ARCH= -gencode arch=compute_70,code=[sm_70,compute_70] GTX 1080, GTX 1070, GTX 1060, GTX 1050, GTX 1030, Titan Xp, Tesla P40, Tesla P4# ARCH= -gencode arch=compute_61,code=sm_61 -gencode arch=compute_61,code=compute_61 GP100/Tesla P100 –…
摘要: 阿里云发布了国内首个公共云上的轻量级GPU异构计算产品——VGN5i实例,该实例打破了传统直通模式的局限,可以提供比单颗物理GPU更细粒度的服务,从而让客户以更低成本.更高弹性开展业务. 在硅谷举办的2019年NVIDIA GPU技术大会(GTC)上,阿里云发布了国内首个公共云上的轻量级GPU异构计算产品——VGN5i实例,该实例打破了传统直通模式的局限,可以提供比单颗物理GPU更细粒度的服务,从而让客户以更低成本.更高弹性开展业务. 在该实例发布之前,业内均采用以单颗物理GPU为单位的…
显卡有Nvidia 和 ATI两个芯片,我们经常称他们为N卡和A卡,N卡更加注重于性能,而A卡则为颜色艳丽,画面更好.不过,最近一些windows10系统用户在使用N卡过程中,遇到了提示“您当前未使用连接到nvidia gpu的显示器”,根本无法打开Nvidia控制面板,该怎么办呢?该问题是由于驱动程序文件损坏或安装驱动程序失败导致的,在本文中系统城小编给大家分享下具体解决方法! 步骤如下: 1.重装Nvidia 显卡驱动: 2.重装完成后按下win+x 点击[控制面板]: 3.在控制面板中将查…
NVIDIA系统管理界面介绍 原文来源:https://developer.nvidia.com/nvidia-system-management-interface NVIDIA系统管理界面(nvidia-smi)是一个命令行实用程序,基于NVIDIA管理库(NVML),旨在帮助管理和监控NVIDIA GPU设备. 此实用程序允许管理员查询GPU设备状态并具有相应的权限,允许管理员修改GPU设备状态.它针对的是Tesla TM,GRID TM,Quadro TM和Titan X产品,但其他NV…
NVIDIA GPU Pascal架构简述 本文摘抄自英伟达Pascal架构官方白皮书:https://www.nvidia.com/en-us/data-center/resources/pascal-architecture-whitepaper/ SM 相比Maxwell架构,Pascal架构改进了16-nm FinFET的制造工艺,并提供了各种其它架构改进. Pascal further improves the already excellent power efficiency pr…
NVIDIA GPU Volta架构简述 本文摘抄自英伟达Volta架构官方白皮书:https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/sc18-tesla-democratization-tech-overview-r4-web.pdf SM Volta架构目前仅GV100支持 Volta architecture comprises a single variant:…
NVIDIA GPU Turing架构简述 本文摘抄自Turing官方白皮书:https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf SM Turing的流式多处理器(SM)和Volta的架构相同,都是7.x. The Turing Streaming Mult…
NVIDIA GPU自动调度神经网络 对特定设备和工作负载进行自动调整对于获得最佳性能至关重要.这是有关如何使用自动调度器为NVIDIA GPU调整整个神经网络. 为了自动调整神经网络,将网络划分为小的子图,并对其进行独立调整.每个子图被视为一个搜索任务.任务调度程序可以对时间进行分片,并为这些任务动态分配时间资源.任务调度程序可以预测每个任务对端到端执行时间的影响,确定可以最大程度地减少执行时间的任务的优先级. 对于每个子图,使用compute声明tvm/python/topi获取张量表达式形…
NVIDIA GPU的快速傅立叶变换 cuFFT库提供GPU加速的FFT实现,其执行速度比仅CPU的替代方案快10倍.cuFFT用于构建跨学科的商业和研究应用程序,例如深度学习,计算机视觉,计算物理,分子动力学,量子化学以及地震和医学成像.使用cuFFT,应用程序会自动受益于常规性能的改进和新的GPU架构.cuFFT库包含在NVIDIA HPC SDK和CUDA Toolkit中. cuFFT设备扩展 cuFFT设备扩展(cuFFTDx)允许应用程序将FFT内联到用户内核中.与cuFFT主机AP…
NVIDIA GPU上的Tensor线性代数 cuTENSOR库是同类中第一个GPU加速的张量线性代数库,提供张量收缩,归约和逐元素运算.cuTENSOR用于加速在深度学习训练和推理,计算机视觉,量子化学和计算物理领域的应用.使用cuTENSOR,应用程序会自动受益于常规性能的改进和新的GPU架构. cutensor性能 cuTENSOR库针对NVIDIA GPU的性能进行了高度优化.最新版本增加了对DMMA和TF32的支持. cuTENSOR的主要功能 张量收缩,缩小和元素运算 混合精度支持…