Deep Convolution Auto-encoder】的更多相关文章

对基于深度神经网络的Auto Encoder用于异常检测的一些思考 from:https://my.oschina.net/u/1778239/blog/1861724 一.前言 现实中,大部分数据都是无标签的,人和动物多数情况下都是通过无监督学习获取概念,故而无监督学习拥有广阔的业务场景.举几个场景:网络流量是正常流量还是攻击流量.视频中的人的行为是否正常.运维中服务器状态是否异常等等.有监督学习的做法是给样本标出label,那么标label的过程肯定是基于某一些规则(图片除外),既然有了规则…
一.概念介绍 自编码器是一种执行数据压缩的网络架构,其中的压缩和解压缩功能是从数据本身学习得到的,而非人为手工设计的.自编码器的两个核心部分是编码器和解码器,它将输入数据压缩到一个潜在表示空间里面,然后再根据这个表示空间将数据进行重构得到最后的输出数据.编码器和解码器都是用神经网络构建的,整个网络的构建方式和普通的神经网络类似,通过最小化输入和输出之间的差异来得到最好的网络. 二.作用1.    图像去噪: 2.    数据压缩降维. 但是它的图像压缩性能不如JPEG.MP3等传统压缩方法,并且…
对自编码器的理解: 对于给定的原始输入x,让网络自动找到一种编码方式(特征提取,原始数据的另一种表达),使其解码后的输出x'尽可能复现原始输入x. 知乎参考:https://www.zhihu.com/question/41490383  UFLDL : http://deeplearning.stanford.edu/wiki/index.php/%E8%87%AA%E7%BC%96%E7%A0%81%E7%AE%97%E6%B3%95%E4%B8%8E%E7%A8%80%E7%96%8F%E…
论文地址:DeepFilterNet:基于深度滤波的全频带音频低复杂度语音增强框架 论文代码:https://github.com/ Rikorose/DeepFilterNet 引用:Schröter H, Rosenkranz T, Maier A. DeepFilterNet: A Low Complexity Speech Enhancement Framework for Full-Band Audio based on Deep Filtering[J]. arXiv preprin…
论文地址:基于分层递归神经网络的嵌入式设备轻量化在线降噪 引用格式:Schröter H, Rosenkranz T, Zobel P, et al. Lightweight Online Noise Reduction on Embedded Devices using Hierarchical Recurrent Neural Networks[J]. arXiv preprint arXiv:2006.13067, 2020. 摘要 基于深度学习的降噪算法已经证明了它们的成功,尤其是对非平…
Deep Learning and Shallow Learning 由于 Deep Learning 现在如火如荼的势头,在各种领域逐渐占据 state-of-the-art 的地位,上个学期在一门课的 project 中见识过了 deep learning 的效果,最近在做一个东西的时候模型上遇到一点瓶颈于是终于决定也来了解一下这个魔幻的领域. 据说 Deep Learning 的 break through 大概可以从 Hinton 在 2006 年提出的用于训练 Deep Belief…
ssl payload取1024字节,然后使用VAE检测异常的ssl流. 代码如下: from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler import numpy as np import tensorflow as tf import tflearn from matplotlib import pyplot as plt import sea…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Abstract: 在深度学习的最新进展的启发下,我们提出了一种基于卷积神经网络(CNN)的视频压缩框架DeepCoder.我们分别对预测信号和残差信号应用独立的CNN网络.采用标量量化和哈夫曼编码将量化后的特征映射编码为二进制流.本文采用固定的32×32块来证明我们的想法,并与已知的H.264/AVC视频编码标准进行了性能比较,具有可比较的率失真性能.这里使用结构相似性(SSIM)来测量失真,因为它更接近感知响应. I. INTRO…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 1.Abstract: 本文主要介绍的是2015年以来关于深度图像/视频编码的代表性工作,主要可以分为两类:深度编码方案以及基于传统编码方案的深度工具.对于深度编码方案,像素概率建模和自动编码器是两种方法,分别可以看作是预测编码方案和变换编码方案.对于深度工具,有几种使用深度学习来执行帧内预测.帧间预测.跨通道预测.概率分布预测.变换.后处理.环内滤波器.上/下采样以及编码优化的建议技术.为了倡导基于深度学习的视频编码研究,本文对我们…
Paper information Titile:Deep Fusion Clustering Network Authors:Wenxuan Tu, Sihang Zhou, Xinwang Liu, Xifeng Guo, Zhiping Cai, En Zhu, Jieren Cheng Sources:2020, AAAI Code:Download Paper:Download Others:4 Citations, 41 References Abstract The disadva…