壁虎书1 The Machine Learning Landscape】的更多相关文章

属性与特征: attribute: e.g., 'Mileage' feature: an attribute plus its value, e.g., 'Mileage = 15000' Note that some regression algorithm can be used for classification as well,and vice versa. For example,Logistic Regression is commonly used for classifica…
the main steps: 1. look at the big picture 2. get the data 3. discover and visualize the data to gain insights 4. prepare the data for machine learning algorithms 5. select a model and train it 6. fine-tune your model 7. present your solution 8. laun…
本章介绍了机器学习的一些基本概念,已经应用场景.这部分知识在其它地方也经常看到,不再赘述. 这里只记录一些作者提到的,有趣的知识点. 回归(regression)名字的来源:这是由Francis Galton引入的一个统计学术语,当时他在研究这一现象:个子很高的人,其子女一般会比他们低.由于孩子是变低的,Francis Galton称之为:向平均值的回归(regression to the mean).从此他所使用的这种用于分析变量之间相关性的研究方法,被称作回归. 在机器学习中,一个属性(at…
去年在北京参加了一次由O'Reilly和Cloudera联合举办的大数据会议Strata Data Conference,并有幸获得了O'Reilly出版的Hands-On Machine Learning with Scikit-Learn and TensorFlow英文书,总体来说,这是一本不错的技术书,很多人也都在推荐这本书.这本书的作者通过具体的例子.很少的理论以及两款成熟的Python框架:Scikit-Learn和TensorFlow,帮助读者掌握构建智能系统所需要的概念和工具.这…
if you aggregate the predictions of a group of predictors,you will often get better predictions than with the best individual predictor. a group of predictors is called an ensemble:this technique is called Ensemble Learning,and an Ensemble Learning a…
SVM is capable of performing linear or nonlinear classification,regression,and even outlier detection. SVMs are particularly well suited for classification of complex but small- or medium-sized datasets. Linear SVM Classification: Soft Margin Classif…
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machine Learning (by Hastie, Tibshirani, and Friedman's ) 2.Elements of Statistical Learning(by Bishop's) 这两本是英文的,但是非常全,第一本需要有一定的数学基础,第可以先看第二本.如果看英文觉得吃力,推荐看一下下面…
声明:本博客整理自博友@zhouyong计算广告与机器学习-技术共享平台,尊重原创,欢迎感兴趣的博友查看原文. 写在前面 记得在<Pattern Recognition And Machine Learning>一书中的开头有讲到:“概率论.决策论.信息论3个重要工具贯穿着<PRML>整本书,虽然看起来令人生畏…”.确实如此,其实这3大理论在机器学习的每一种技法中,或多或少都会出现其身影(不局限在概率模型). <PRML>书中原话:”This chapter also…
由于研究工作的需要,最近在看机器学习的一些基本的算法.选用的书是周志华的西瓜书--(<机器学习>周志华著)和<机器学习实战>,视频的话在看Coursera上Andrew Ng的<machine learning>.接下来的一些算法的会涉及到视频中的内容. 虽然是计算机科班出身,奈尔太菜,或许远远不够学习机器学习的基本要求.但是本人学习机器学习的目的是为了做数据挖掘的,也就是说不是研究算法本身而是做工程类的,那么理解算法的思路和过程即可,不需要纠结数学证明.所以接下来的博…
本文汇编了一些机器学习领域的框架.库以及软件(按编程语言排序). 1. C++ 1.1 计算机视觉 CCV —基于C语言/提供缓存/核心的机器视觉库,新颖的机器视觉库 OpenCV—它提供C++, C, Python, Java 以及 MATLAB接口,并支持Windows, Linux, Android and Mac OS操作系统. 1.2 机器学习 MLPack DLib ecogg shark 2. Closure Closure Toolbox—Clojure语言库与工具的分类目录 3…