softmax 损失函数求导过程】的更多相关文章

前言:softmax中的求导包含矩阵与向量的求导关系,记录的目的是为了回顾. 下图为利用softmax对样本进行k分类的问题,其损失函数的表达式为结构风险,第二项是模型结构的正则化项. 首先,每个queue:x(i)的特征维度是 n , 参数 θ 是一个 n×k 的矩阵,输出的结果 y(i) 为一个 k×1 的向量,其中第 j 个元素对应元素的 e 指数为该 queue 属于第 j 类的概率(未归一化).所以虽然损失函数 J(θ) 是一个常数,但是它的自变量为一个矩阵 Θ 和 一个特征向量 x(…
一.softmax函数 softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类! 假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个元素的softmax值就是: $$  S_i = \frac{e^j }{ \sum\nolimits_{j} e^j}  \tag{1}$$ 更形象的如下图表示: softmax直白来说就是将原来输出是3,1,-3通过softmax函数一作用,就映射成为(0,1)的值,而这些值的累和为1(满足概率…
来源:https://www.jianshu.com/p/c02a1fbffad6 简单易懂的softmax交叉熵损失函数求导 来写一个softmax求导的推导过程,不仅可以给自己理清思路,还可以造福大众,岂不美哉~ softmax经常被添加在分类任务的神经网络中的输出层,神经网络的反向传播中关键的步骤就是求导,从这个过程也可以更深刻地理解反向传播的过程,还可以对梯度传播的问题有更多的思考. softmax 函数 softmax(柔性最大值)函数,一般在神经网络中, softmax可以作为分类任…
全文转载自:softmax的log似然代价函数(公式求导) 在人工神经网络(ANN)中,Softmax通常被用作输出层的激活函数.这不仅是因为它的效果好,而且因为它使得ANN的输出值更易于理解.同时,softmax配合log似然代价函数,其训练效果也要比采用二次代价函数的方式好. 1. softmax函数及其求导 softmax的函数公式如下: 其中,表示第L层(通常是最后一层)第j个神经元的输入,表示第L层第j个神经元的输出,表示自然常数.注意看,表示了第L层所有神经元的输入之和. softm…
1.sigmoid函数 ​ sigmoid函数,也就是s型曲线函数,如下: 函数: 导数: ​ 上面是我们常见的形式,虽然知道这样的形式,也知道计算流程,不够感觉并不太直观,下面来分析一下. 1.1 从指数函数到sigmoid ​ 首先我们来画出指数函数的基本图形: ​ 从上图,我们得到了这样的几个信息,指数函数过(0,1)点,单调递增/递减,定义域为(−∞,+∞),值域为(0,+∞),再来我们看一下sigmoid函数的图像: ​ ​ 如果直接把e−x放到分母上,就与ex图像一样了,所以分母加上…
参考: https://blog.csdn.net/qian99/article/details/78046329…
softmax是logisitic regression在多酚类问题上的推广,\(W=[w_1,w_2,...,w_c]\)为各个类的权重因子,\(b\)为各类的门槛值.不要想象成超平面,否则很难理解,如果理解成每个类的打分函数,则会直观许多.预测时我们把样本分配到得分最高的类. Notations: \(x\):输入向量,\(d\times 1\)列向量,\(d\)是feature数 \(W\):权重矩阵,\(c\times d\)矩阵,\(c\)是label数 \(b\):每个类对应超平面的…
目录 一.BP原理及求导 二.softmax及求导 一.BP 1.为什么沿梯度方向是上升最快方向     根据泰勒公式对f(x)在x0处展开,得到f(x) ~ f(x0) + f'(x0)(x-x0), 故得到f(x) - f(x0) ~ f'(x0)(x-x0), 所以从x0出发,变化最快,即使f(x)-f(x0)最大,也就f'(x0)(x-x0),由于f'(x0)与(x-x0)均为向量(现在x0取的是一个数,如果放在多维坐标那么x0就是一个多维向量),由余弦定理f'(x0) 与(x-x0)方…
目录 符号定义 对 softmax 求导 对 cross-entropy 求导 对 softmax 和 cross-entropy 一起求导 References 在论文中看到对 softmax 和 cross-entropy 的求导,一脸懵逼,故来整理整理. 以 softmax regression 为例来展示求导过程,softmax regression 可以看成一个不含隐含层的多分类神经网络,如 Fig. 1 所示. Fig. 1 Softmax Regression. softmax r…