置信区间-显著性-P-值】的更多相关文章

1.置信区间:误差范围(区间)在统计概率中就叫做置信区间:简单来说置信区间就是误差范围 我们用中括号[a,b]表示样本估计总体平均值的误差范围的区间,由于a和b的确切数值取决于你希望自己对于“该区间包含总体均值”这一结果具有可信程度,所以[a,b]被称为置信区间. 2.置信水平:我们选择这个置信区间,目的是为了让“a和b之间包含总体平均值”这一结果具有特定的概率,这个概率就称为置信水平. 蒙特卡罗模拟 1.蒙特卡罗模拟用于求事件的近似概率,它多次执行同一模拟,然后将结果进行平均. 2.用查表法替…
1,T检验和F检验的由来 一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定. 通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果.倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很 少.很罕有的情况下才出现:那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够…
1,T检验和F检验的由来 一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定. 通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果.倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少.很罕有的情况下才出现:那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒…
来源: http://blog.sina.com.cn/s/blog_4ee13c2c01016div.html   1,T检验和F检验的由来 一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定.   通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果.倘若经比较后发现,出现这结果的机率很少,亦即是说,…
转自:http://blog.sina.com.cn/s/blog_4ee13c2c01016div.html1,T检验和F检验的由来一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定. 通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果.倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少.…
MLE :最大似然估计,求得的这套参数估计能够通过指定模型以最大概率在线样本观测数据 必须来自随机样本,自变量与因变量之间是线性关系 logistic 回归没有关于自变量分布的假设条件,自变量可以连续,也可以离散,不需要假设他们之间服从多元正太分布,当然如果服从,效果更好 logistic 回归对多元共线性敏感,自变量之间存在多元共线性会导致标准误差的膨胀   ???? 最大似然的性质: 一致性,渐进有效性,渐进正态性 一致性表示当样本规模增大时,模型参数向真值收敛,变得无偏 渐进有效性表示规模…
分析工具: (1)SQL   select from   where   group by having   order by   limit   运算符(算数运算符+-*/.比较运算符><=.逻辑运算符not/and/or)   聚合函数(count.sum.avg.max.min)   函数(算术函数.字符串函数.日期函数)   子查询(标量子查询.关联子查询)   谓词(like.between.is null.in)   case when   集合运算(表的加减法.表联结) (2)p…
SPSS分析技术:CMH检验(分层卡方检验):辛普森悖论,数据分析的谬误 只涉及两个分类变量的卡方检验有些时候是很局限的,因为混杂因素总是存在,如果不考虑混杂因素,得出的分析结论很可能是谬误的,这就是著名的辛普森悖论.辛普森悖论的故事是这样的:1973年秋季,加州大学伯克利分校研究生院的新生入学.有些人在看到学校两个学院的综合录取表格后,怀疑学校在录取学生时存在性别歧视,因为女生录取率低于男生,如下表所示: 为了平息质疑,校领导根据学院的不同,将综合录取率拆开,分别考察商学院和法学院的录取情况,…
在线AB实验成为当今互联网公司中必不可少的数据驱动的工具,很多公司把自己的应用来做一次AB实验作为数据驱动的试金石. 文 | 松宝 来自 字节跳动数据平台团队增长平台 在线AB实验成为当今互联网公司中必不可少的数据驱动的工具,很多公司把自己的应用来做一次AB实验作为数据驱动的试金石. 数据 => 洞察 => 优化,循环往复寻找最优解,寻找增长的方法. AB中有句经典的名言:大胆假设,小心求证. 本系列连载会从数据驱动.AB实验基本架构.指标选取与数据分析等角度切入,第一篇着重介绍AB实验与数据…
基因表达谱数据 基因表达谱可以用一个矩阵来表示,每一行代表一个基因,每一列代表一个样本(如图1).所有基因的表达谱数据在“gene_exp.txt”文件中存储,第一列为基因的entrez geneid,第2~61列是疾病样本的表达,第62~76列是正常样本的表达. 图1 基因表达谱的矩阵表示 寻找差异表达的基因: 原理介绍: 差异表达分析是目前比较常用的识别疾病相关miRNA以及基因的方法,目前也有很多差异表达分析的方法,但比较简单也比较常用的是Fold change方法.它的优点是计算简单直观…
frequentism-and-bayesianism-chs-iii   频率主义 vs 贝叶斯主义 III:置信(Confidence)与可信(Credibility),频率主义与科学,不能混为一谈¶   这个notebook出自Pythonic Perambulations的博文 . The content is BSD licensed.   这个系列共4个部分:中文版Part I Part II Part III Part IV,英文版Part I Part II Part III P…
如果CC表示野生基型,CA因表示杂合型突变基因型,AA表示纯合型突变基因型.Recessive Model(隐性模型 ):AA VS (CA+CC);Dominant Model(显性模型):(CA+AA)VS CC;Additive Model(加性模型):AA VS CC超显性模型 :(CC+AA)VS CA.共显性模型 :AA VS CA VS CC;1.怎样确定野生型和变异性:看研究对象中纯合子基因型的个数,eg: CC为200个.AA为100个,则AA为纯合子变异型(个数少的为变异型)…
目录 在 R 中估计 GARCH 参数存在的问题(基于 rugarch 包) 导论 rugarch 简介 指定一个 \(\text{GARCH}(1, 1)\) 模型 模拟一个 GARCH 过程 拟合一个 \(\text{GARCH}(1,1)\) 模型 rugarch 中的优化与参数估计 优化器的选择 结论 在 R 中估计 GARCH 参数存在的问题(基于 rugarch 包) 本文翻译自<Problems in Estimating GARCH Parameters in R (Part 2…
本文地址:http://www.datasoldier.net/archives/173版权声明:本文为原创文章,版权归 数据小兵 所有,欢迎分享本文,转载请保留出处!     方差分析经常会出现不满足前提条件的情况,比如: 数据不符正态分布: 如何转换为正态: 方差不齐怎么办: 辛辛苦苦收集的原始数据,无法从中获取相应的结果.我们会很苦恼,不知下一步要如何去做. 我们一方面想通过参数检验获取相对准确的分析结论,另一方面却又不得不面对众多参数检验的前提假设条件难以满足的窘态. 如果遇到此类问题,…
多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程 为: 毫无疑问,多元线性回归方程应该为: 上图中的 x1,  x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示: 那么,多元线性回归方程矩阵形式为: 其中: 代表随机误差, 其中随机误差分为:可解释的误差 和 不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义…
Python时间序列数据分析--以示例说明 标签(空格分隔): 时间序列数据分析 本文的内容主要来源于博客:本人做了适当的注释和补充. https://www.analyticsvidhya.com/blog/2016/02/time-series-forecasting-codes-python/ 英文不错的读者可以前去阅读原文. 在阅读本文之前 ,推荐先阅读:http://www.cnblogs.com/bradleon/p/6827109.html 导读 本文主要分为四个部分: 用pand…
欢迎关注博主主页,学习python视频资源,还有大量免费python经典文章 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 医药统计项目可联系  QQ:231469242    目录: 1.Sh…
火山图 Volcano plot 在统计学上,火山图是一种类型的散点图,被用于在大数据中快速鉴定变化.由于它的形成像火山喷发的样子,所以被称为火山图.和上文讲的曼哈顿图类似.   火山图基本元素 火山图也有很多种样式,在生物学高通量测序结果中,常见有的X和Y轴分别为aboundance 和 fold-change,或p-value和fold-change两种样式.如上图中为p-value versus fold-change的样式,,先此为例进行图中基本元素解读: - X轴:通常为两组基因表达或…
R语言建立回归分析,并利用VIF查看共线性问题的例子 使用R对内置longley数据集进行回归分析,如果以GNP.deflator作为因变量y,问这个数据集是否存在多重共线性问题?应该选择哪些变量参与回归? >>>> 答 ## 查看longley的数据结构 str(longley) ## 'data.frame':    16 obs. of  7 variables: ##  $ GNP.deflator: num  83 88.5 88.2 89.5 96.2 ... ##  …
文献名:Analysis of endogenous peptides released from osteoarthritic cartilage unravels novel pathogenic markers(分析骨关节炎软骨释放的内源肽从而揭示新致病标记) 期刊名:MCP(molecular and cellular proteomics) 发表时间:(2019年10月) 单位: 拉科鲁尼亚生物医学研究所(INIBIC) 拉科鲁尼亚大学附属综合医院(CHUAC) Grupo de In…
今天被粉丝发的文章给难住了,又偷偷去学习了一下竞争风险模型,想起之前写的关于竞争风险模型的做法,真的都是皮毛哟,大家见笑了.想着就顺便把所有的生存分析的知识和R语言的做法和论文报告方法都给大家梳理一遍. 什么时候用生存分析 当你关心结局和结局发生时间的时候,就要考虑生存分析了,这种既有结局又有时间的数据叫做生存数据,英文叫做Time-to-event data. 只不过因为这个方法医学上用来分析存活情况用的多,所以得名生存分析,反正你就记住一个例子,我要研究汽车发生故障,我也应该用生存分析,因为…
  P值是论文中最常用的一个统计学指标,可是其误用.解释错误的现象却很常见.因此,很有必要说明p值的意义.用法及常见错误.   P值指的是比较的两者的差别是由机遇所致的可能性大小.P值越小,越有理由认为对比事物间存在差异.例如,P<0.05,就是说结果显示的差别是由机遇所致的可能性不足5%,或者说,别人在同样的条件下重复同样的研究,得出相反结论的可能性不足5%.P>0.05称“不显著”:P<=0.05称“显著”,P<=0.01称“非常显著”.   由于常用“显著”来表示P值大小,所…
郑冰刚提到P值,说P值的定义(着重号是笔者加的,英文是从WikiPedia摘来的): P值就是当原假设为真时,比所得到的样本观察结果更极端的结果出现的概率. The P-value is the probability of obtaining a result at least as extreme as the one that was actually observed, given that the null hypothesis is true. 以下延续白话系列,解释一下,“什么是P…
统计学意义(p值) 结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法.专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标.p值是将观察结果认为有效即具有总体代表性的犯错概率.如p=0.05提示样本中变量关联有5%的可能是由于偶然性造成的.即假设总体中任意变量间均无关联(变量之间的独立性成立),我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果.(这并不是说如果变量间存在关联,我们…
P值与significant的理解 来源:广州市统计局   发表日期:2015-01-21     P值可以理解为结论的风险大小,也就是根据数据得出的结果有多大的错误风险,P值越小,结论错误的风险越小,即结论越可靠.P值越大,错误的风险越大,即结论的可靠性差.实际上significant的含义应该是“非偶然的”,当根据样本资料所得结果是significant,实际上表明这一结果“不是偶然”得到的,更可能是真实存在这样一种结果.关于P值的理解         P值可以理解为结论的风险大小,也就是根…
表结构: create table hy_emp( id number(7,0) primary key, name nvarchar2(20) not null, salary number(5,0) not null) 充值: insert into hy_emp select rownum,dbms_random.string('*',dbms_random.value(1,20)),dbms_random.value(1,99999) from dual connect by level…
本节内容 1:样本估计总体均值跟标准差,以及标准误 2:中心极限定理 3:如何查看数据是否是正态分布QQ图 4:置信区间的理解跟案例 5:假设检验 参考文章: 假设检验的学习和理解 一.样本估计总体均值跟标准差 多组抽样 估计总体均值 = mean(多组的各个均值) 估计总体标准差 = sd(多组的各个标准差) 标准误 = sd(多组的各个均值) 一组抽样 估计总体均值 = mean(一组的均值) 估计总体标准差 = sd(一组的标准差) 标准误 = 估计的标准差/ sqrt(n) 标准误: 真…
t检验中的t值和p值是什么关系_t检验和p值的关系 t检验中通过样本均值 总体均值 样本标准差 样本量 可以计算出一个t值,这个t值和p值有什么关系? 根据界值表又会查出一个数,这个数和t值比较,得出大小,判断是否接受原假设.感觉p值一直都没有什么作用? 解答:在进行t检验时,会计算出一个t值,而在选定显著性水平后,可以找到相比较的t值,两者可以比较,判断显著性.p值代表的是不接受原假设的最小的显著性水平,可以与选定的显著性水平直接比较.例如取5%的显著性水平,如果p值大于5%,就接受原假设,否…
第三章 假设检验 区间估计与假设检验的基本区别? 上一章中讨论了置信区间的估计方法.它是利用样本数据,以抽样总体的分布为理论基础,用一定的概率保证来计算出原总体中未知参数的区间范围.特别值得注意的是:在作区间估计之前,我们对所要估计的参数是一无所知的. § 而在这一章中,我们所要做的工作是,先对要研究的参数作一个假设,然后去检验这个假设是否正确.因此假设检验对于所研究的参数总是先有一个假设的值. § 这也是这两种方法最基本的区别. 显著水平(significance level)或概率水平(pr…
laviewpbt  2014.8.4 编辑 Email:laviewpbt@sina.com   QQ:33184777 最近闲来蛋痛,看了一些显著性检测的文章,只是简单的看看,并没有深入的研究,以下将研究的一些收获和经验共享. 先从最简单的最容易实现的算法说起吧: 1. LC算法 参考论文:Visual Attention Detection in Video Sequences Using Spatiotemporal Cues. Yun Zhai and Mubarak Shah.  P…